Abstract:
In a real-time application, one or more computational tasks execute according to a time schedule and use input data from input devices and/or output data from output devices. One or more of the input devices or output devices may be unscheduled devices that attempt to access the peripheral bus at unscheduled times. Such unscheduled bus access can cause the time schedule to become comprised. Various methods for arbitrating access to the bus to better integrate the bus access with the time schedule followed by the application are described.
Abstract:
System and method for developing a circuit for QR decomposition with auxiliary functionality. A first function is included in a first program. The first function is configurable to specify an auxiliary function to be performed by a modified QR decomposition circuit in addition to QR decomposition of a matrix A into two matrices Q and R using a Modified Gram Schmidt process. A second program is automatically generated based on configuration of the QR decomposition and the first function. The second program includes program code implementing the QR decomposition and the auxiliary function for the first function in the first program. A hardware configuration program (HCP) may be automatically generated based on the first program, including the second program, where the HCP is deployable to hardware, e.g., a programmable hardware element, thereby implementing the modified QR decomposition circuit, including the QR decomposition of the matrix A and the auxiliary function.
Abstract:
Systems and methods for measuring transmitter and/or receiver I/Q impairments are disclosed, including iterative methods for measuring transmitter I/Q impairments using shared local oscillators, iterative methods for measuring transmitter I/Q impairments using intentionally-offset local oscillators, and methods for measuring receiver I/Q impairments. Also disclosed are methods for computing I/Q impairments from a sampled complex signal, methods for computing DC properties of a signal path between the transmitter and receiver, and methods for transforming I/Q impairments through a linear system.
Abstract:
Techniques for isochronous data transfer between different memory-mapped domains in a distributed system. A method includes configuring an isochronous engine with an isochronous period. The method further includes transferring data over a memory-mapped fabric from a first memory to a second memory during a specified portion of a cycle of the isochronous period. The first memory is comprised in a first device in a first memory-mapped domain of the memory-mapped fabric and the second memory is comprised in a second device in a second memory-mapped domain of the memory-mapped fabric. The method may further comprise translating one or more addresses related to the transferring. The memory-mapped fabric may be a PCI-Express fabric. The transferring may be performed by a DMA controller. A non-transparent bridge may separate the first and the second memory-mapped domains and may perform the translating.
Abstract:
System and method for editing a graphical diagram. A graphical diagram, such as a graphical program, is displayed on a display device. User input may be received editing the graphical diagram, thereby generating an edited graphical diagram. Placement of one or more elements in the graphical diagram may be adjusted in response to the editing based on determined forces applied to the one or more elements in the edited graphical diagram based on the said editing, resulting in an adjusted edited graphical diagram. The adjusted edited graphical diagram may be displayed on the display device, which may include displaying an animation illustrating the movement of the elements to an equilibrium state in which the forces balance and movement ceases. The editing, adjusting, and displaying may be performed sequentially and/or concurrently, as desired.
Abstract:
System and method for synchronizing devices. A device reads a first counter coupled to and associated with a master clock and a second counter coupled to and associated with the device, where the device is one of one or more devices coupled to the master clock and each other via a switched fabric, where each device includes a respective clock, and is coupled to and associated with a respective second counter. Each of the first counter and the second counters is accessible by each of the one or more devices. The device determines a difference between the device's associated second counter and the first counter, and determines and stores a time reference for the device relative to the master clock based on the determined difference, where the time reference is useable to timestamp events or synchronize future events.
Abstract:
Test executive system and method of use. The system includes a test executive engine, configured to execute at least one test executive sequence to test at least one unit under test (UUT), a process model that specifies one or more function sequences for pre-test or post-test functionality for the test executive sequences, and a plug-in framework, configured to selectively incorporate one or more process model plug-in instances in the process model. Each process model plug-in instance specifies at least one respective function sequence for pre-test or post-test functionality for the test executive sequences.
Abstract:
Test executive system and method of use. The system includes a test executive engine, configured to execute at least one test executive sequence to test at least one unit under test (UUT), a process model that specifies one or more function sequences for pre-test or post-test functionality for the test executive sequences, and a plug-in framework, configured to selectively incorporate one or more process model plug-in instances in the process model. Each process model plug-in instance specifies at least one respective function sequence for pre-test or post-test functionality for the test executive sequences.
Abstract:
A touch-gesture wiring method for connecting data flow wires to input/output terminals of nodes in a graphical program is described. The method may be implemented by a graphical programming application that executes on a mobile device that includes a touch-sensitive screen configured to receive user input as touch gestures. The method may aid the user by displaying a magnified view of the input/output terminals that makes it easier (relative to the default view of the graphical program) for the user to see the input/output terminals and/or easier to select a desired one of the input/output terminals.
Abstract:
System and method for estimating a rotational shift between a first discrete curve and a second discrete curve, where the second discrete curve is a rotationally shifted version of the first discrete curve. First and second discrete curves are received. A rotational shift between the first discrete curve and the second discrete curve is estimated based on the first discrete curve and the second discrete curve. A cumulative rotational shift is updated based on the estimated rotational shift. A rotationally shifted version of the second discrete curve is generated based on the cumulative rotational shift. The estimating, updating, and generating are performed in an iterative manner using the respective rotationally shifted discrete curve for each iteration until a stopping condition occurs, thereby determining a final estimate of the rotational shift between the first discrete curve and the second discrete curve. The final estimate may be used to perform curve matching.