Abstract:
Information is transmitted from a radioterminal to a first base station via a first wireless link. A satellite is used to route the information from the first base station to a second base station via second wireless links between the satellite and the first base station and between the satellite and the second base station. At least one of the second wireless links is more spectrally efficient than the first wireless link. Related methods, systems and devices are disclosed.
Abstract:
A mobile terminal is enabled to conduct an EMV transaction. A wireless access node in the EMV card-reader terminal is provided for connecting a mobile terminal to the card-reader terminal. An EMV-proxy module executing in the card-reader terminal facilitates communication between the mobile terminal and the card-reader terminal. The EMV-proxy module lets the mobile terminal function in essentially the same way as a regular EMV chip card with respect to the card-reader terminal. The card-reader terminal may then conduct EMV transactions on behalf of the mobile terminal without requiring new software and/or hardware at the EMV issuer. EMV data is stored in the mobile terminal in the form of secure dynamic data objects. This Abstract is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
Abstract:
Communications of a mobile station with a satellite mobile communications system and a terrestrial mobile communications system are coordinated. The mobile station is registered with the terrestrial mobile communications system and, responsive to the registration of the mobile station with the terrestrial mobile communications system, the mobile station is concurrently registered with the satellite mobile communications system. The concurrent registration may include implicitly registering the mobile station with the satellite mobile communications system, e.g., by storing information identifying the mobile station may be stored in a location register of the satellite mobile communications system responsive to the registration of the mobile station with the terrestrial mobile communications system, and maintaining synchronization between the two registrations. Authentication tokens may be pre-generated for quick re-registration with a satellite mobile communications system.
Abstract:
A method includes projecting motion vectors describing a transformation from a previous video frame to a future video frame onto a plane between the previous video frame and the future video frame, detecting potential artifacts at the plane based on an intersection of a cover region and an uncover region on the plane, and analyzing a dissimilarity between a trial video frame and both the previous video frame and the future video frame. The trial video frame is generated between the previous video frame and the future video frame based on a frame rate conversion ratio derived from a source frame rate and a desired frame rate. The method also includes estimating reliability of the projected motion vectors based on the potential artifact detection and the dissimilarity analysis.
Abstract:
A mechanism for enabling a user to vary the scale or zoom of image data for aspect ratio conversion using a graphical user interface is disclosed. A user may move a selector of the graphical user interface to one end for selecting a linear scaling, to the other end for selecting a parabolic scaling or in between for selecting a scaling associated with another function, thereby enabling a user to vary the magnitude of the scaling across the image data. A parametric function with a single parameter may be used to scale the image data, where the movement of the selector may change the parameter and consequently vary the scaling of the image data. In this manner, a user may efficiently vary or select the scaling of the image data using a graphical user interface to reduce objectionable distortion associated with changing the aspect ratio of the image data.
Abstract:
In a deblocking operation, pixel values within a first block of pixels are compared, and pixel values in the first block are also compared to pixel values in a second block of pixels that is adjacent to the first block. Based on the results of the comparisons, a digital deblocking filter and a region of interest can be selected, where the region of interest identifies a number of pixels in the first block and a number of pixels in the second block to which the selected filter is to be applied.
Abstract:
A communications system includes a space-based network (SBN) including a plurality of spotbeams using a first set of frequencies and an ancillary terrestrial network (ATN) including a plurality of base stations using a second set of radio frequencies. In a coverage zone of a given spot beam wherein the SBN and the ATN use at least one frequency from the first and second sets of frequencies in common, the SBN uses a narrower bandwidth than the ATN on both forward and return links, the ATN employs frequency spreading on at least its return link communications, the SBN employs spatial beam nulling directed toward at least one ancillary terrestrial component (ATC) of the ATN, the SBN employs forward link margin control, the ATN employs return link power control, the SBN employs return link power control and base stations of the ATN provide isolation in the direction of at least one satellite of the SBN. Using such a combination of measures, the ATN and the SBN may support completely or partially overlapping use of the first and second sets of radio frequencies.
Abstract:
A multiple-pipeline system (300) includes a pool (330) of auxiliary function blocks (A-E 335) that are provided as required to select pipelines. Each pipeline (320) in the multiple-pipeline system (300) is configured to include a homogeneous set of core functions (F1-F6). A pool (330) of auxiliary functions (A-E 335) is provided for selective insertion of auxiliary functions (A-E 335) between core functions (F1-F6) of select pipelines. Each auxiliary function includes a multiplexer that allows it to be selectively coupled within each pipeline.
Abstract:
A first and/or a second communications system may provide communications service over a geographic area. A method of operating the first and/or the second communications systems may include generating a measure of aggregate interference reaching a satellite of the second communications system substantially from devices of the first communications system. The measure of aggregate interference reaching the satellite of the second communications system may be transmitted to an element of the first communications system.
Abstract:
Satellite broadcasting methods include providing a cellular satellite communications system configured to transmit information separately to a plurality of different geographic locations defined by a respective plurality of cellular satellite spotbeams, and concurrently transmitting a program signal on a plurality of different spotbeams. The plurality of different spotbeams may include less than a total number of spotbeams of the cellular satellite communications system. The plurality of different spotbeams may be selected adaptively from an available pool of spotbeams based on locations of users requesting the broadcast program signal. Corresponding satellite gateways, broadcast controllers and wireless user terminals are also provided.