Abstract:
A method is provided. A first layer is provided over a substrate, the first layer comprising a first material. A patterned second layer is applied over the first layer via stamping. The second layer comprising a second material. The second layer covers a first portion of the first layer, and does not cover a second portion of the first layer. The second portion of the first layer is removed via a subtractive process while the first portion of the first layer is protected from removal by the patterned second layer.
Abstract:
The present invention relates to an organic light emitting device structure having an organic light emitting device (OLED) over a substrate, where the OLED has, for example, an anode, a hole transporting layer (HTL), a first electron transporting layer (ETL) that is doped with a phosphorescent material, a second electron transporting layer (ETL), and a cathode. The OLEDs of the present invention are directed, in particular, to devices that include an emissive layer comprised of an electron transporting host material having a triplet excited state energy level that is higher than the emissive triplet excited state energy level of the phosphorescent dopant material.
Abstract:
An optoelectronic device and a method of fabricating a photosensitive optoelectronic device includes depositing a first organic semiconductor material on a first electrode to form a continuous first layer; depositing a layer of a second organic semiconductor material on the first layer to form a discontinuous second layer, portions of the first layer remaining exposed; and depositing the first organic semiconductor material on the second layer to form a discontinuous third layer, portions of at least the second layer remaining exposed. The depositing of the first and second organic semiconductor materials are alternated a number of times until a final layer of the second organic material is added to form a continuous layer. A second electrode is deposited over this final layer. One of the first electrode and the second electrode is transparent, and the first organic semiconductor material is one or more donor-type materials or one or more acceptor-type materials relative to second organic semiconductor material, which is one or more materials of the other material type.
Abstract:
An optoelectronic device and a method of fabricating a photosensitive optoelectronic device includes depositing a first organic semiconductor material on a first electrode to form a continuous first layer having protrusions, a side of the first layer opposite the first electrode having a surface area at least three times greater than an underlying lateral cross-sectional area; depositing a second organic semiconductor material directly on the first layer to form a discontinuous second layer, portions of the first layer remaining exposed; depositing a third organic semiconductor material directly on the second layer to form a discontinuous third layer, portions of at least the second layer remaining exposed; depositing a fourth organic semiconductor material on the third layer to form a continuous fourth layer, filling any exposed gaps and recesses in the first, second, and third layers; and depositing a second electrode on the fourth layer, wherein at least one of the first electrode and the second electrode is transparent, and the first and third organic semiconductor materials are both of a donor-type or an acceptor-type relative to second and fourth organic semiconductor materials, which are of the other material type.
Abstract:
Organic light emitting devices are disclosed which are comprised of a heterostructure for producing electroluminescence wherein the heterostructure is comprised of an emissive layer containing a phosphorescent dopant compound. For example, the phosphorescent dopant compound may be comprised of platinum octaethylporphine (PtOEP), which is a compound having the chemical structure with the formula:
Abstract:
Organic light emitting devices are disclosed which are comprised of a heterostructure for producing electroluminescence wherein the heterostructure is comprised of an emissive layer containing a phosphorescent dopant compound. For example, the phosphorescent dopant compound may be comprised of platinum octaethylporphine (PtOEP), which is a compound having the chemical structure with the formula:
Abstract:
A photoactive fiber is provided, as well as a method of fabricating such a fiber. The fiber has a conductive core including a first electrode. An organic layer surrounds and is electrically connected to the first electrode. A transparent second electrode surrounds and is electrically connected to the organic layer. Other layers, such as blocking layers or smoothing layers, may also be incorporated into the fiber. The fiber may be woven into a cloth.
Abstract:
There is disclosed methods utilizing organic vapor phase deposition for growing bulk organic crystalline layers for organic photosensitive devices, heterojunctions and films made by such methods, and devices using such heterojunctions. There is also disclosed new methods for manufacturing heterojunctions and organic photosensitive devices, and the heterojunctions and devices manufactured thereby.