Abstract:
A plasma display apparatus and a method of manufacturing a plasma display apparatus are provided. According to the invention, the accuracy of alignment of the plasma display apparatus is improved. A plasma display apparatus according to one embodiment of the present invention comprises a plasma display panel for producing images and a chassis to which the plasma display panel is attached. The plasma display panel comprises at least one aligning mark and is attached to a first surface of the chassis. The chassis comprises at least one aligning hole corresponding in position to the position of the aligning mark on the plasma display panel. The chassis comprises aluminum and an anti-reflective material. The anti-reflective material is present in the chassis in an amount ranging from about 12 to about 26 parts by weight per 100 parts by weight aluminum.
Abstract:
A plasma display panel is provided having a plurality of scan electrodes and sustain electrodes formed parallel to each other in pairs on a first substrate, and a plurality of address electrodes formed on a second substrate that cross the plurality of first and second electrode pairs. A reset waveform is applied to a scan electrode during a reset period, and a scan pulse that falls from a first voltage level to a second voltage level is applied to the can electrode during an address period. A pre-scan pulse of a third voltage level, which is higher than the first voltage level, is applied to a scan electrode between the reset and address periods, and either a magnitude of the third voltage level or a width of the pre-scan pulse is adjusted according to patterns of subfield data.
Abstract:
A plasma display panel design having a display area and a peripheral area surrounding the display area. Within the display area are discharge cells, and within the peripheral area are dummy cells that serve as a location where fluorescent paste is injected onto in an early stage of making the display, enabling the injection amount and injection speed from a nozzle to stabilize before the fluorescent material is deposited into the discharge cells. A surface area that the fluorescent material is deposited on in the peripheral area is increased to provide for a more rapid stabilization of the injection pressure and injection amount of the paste in the making of the display. A sufficient gap is present between a sealant and the dummy structure so that air and foreign matter can be expelled.
Abstract:
A plasma display according to an exemplary embodiment of the present invention applies different driving methods according to a maximum grayscale level of image data input for one field. When the maximum grayscale level of the field is higher than a reference level, an address period for selecting a light emitting cell and a non-light emitting cell from a plurality of discharge cells and a sustain period for sustain-discharging light emitting cells among the plurality of discharge cells are simultaneously driven in a plurality of sequential subfields after a first subfield. When the maximum grayscale level of the field is less than the reference level, the address period and the sustain period are time-separately driven in the plurality of subfields.
Abstract:
A plasma display device having a structure that reduces the probability of breakdown of the signal transmitting unit. The plasma display device includes a chassis base, a PDP supported in front of the chassis base, a driving circuit board that drives the PDP and is supported on a rear side of the chassis base, and a signal transmitting unit that couples the driving circuit board and the PDP by detouring the chassis base, wherein the ratio of H/W of a separation distance H with respect to a distance W between a connection portion and a vertical portion of the signal transmitting unit is 0.075≦H/W≦0.500.
Abstract translation:一种具有降低信号发送单元故障概率的结构的等离子体显示装置。 等离子体显示装置包括底架,支撑在底座前面的PDP,驱动电路板,驱动PDP并被支撑在底座的后侧;以及信号发送单元,其将驱动电路板 和PDP通过迂回底盘,其中间隔距离H的H / W相对于信号发送单元的连接部分和垂直部分之间的距离W的比率为0.075 <= H / W <= 0.500 。
Abstract:
A plasma display device is provided. The plasma display device includes: a chassis base having a first side and a second side; a plasma display panel on the first side of the chassis base; a first circuit unit on the second side of the chassis base, and the first circuit unit including first electrodes; a second circuit unit electrically connected to electrodes that are drawn out from the plasma display panel, and the second circuit unit including second electrodes; and an anisotropic conductive film interposed between the first and second electrodes for electrically connecting the first electrodes to the second electrodes, wherein the anisotropic conductive film covers the second electrodes and extends to ends of the second electrodes. Accordingly, moisture penetrating into the plasma display device is reduced or prevented to avoid a short circuit and protect various terminals.
Abstract:
A PDP includes a barrier rib formed between an upper substrate and a lower substrate to define discharge regions, and a phosphor layer including red, green, and blue phosphor layers corresponding to the discharge regions. A height of the green phosphor layer is lower than a height of the barrier rib.
Abstract:
A plasma display panel including: a front substrate; a rear substrate; address electrodes extending in a first direction on the rear substrate; barrier ribs between the front and rear substrates defining discharge cells; display electrodes extending in a second direction crossing the first direction and corresponding to the discharge cells, wherein the display electrodes include bus electrodes colored a third chromatic color; a dielectric layer on the front substrate, the dielectric layer covering the display electrodes and colored a first chromatic color that is in a subtractive color mixture relationship with the third chromatic color; and a filter disposed on an outer surface of the front substrate, the filter including: a plurality of light guides; and a plurality of non-glare members that are adjacent to the light guides and colored a second chromatic color.
Abstract:
A plasma display panel having a light absorption reflection film that does not reflect light emitted from a discharge space in a non-discharge region includes: a rear substrate; a plurality of address electrodes arranged on a surface of the rear substrate; a rear dielectric layer arranged on the rear substrate to cover the address electrodes; a plurality of barrier ribs arranged on the rear dielectric layer to define discharge cells; a front substrate facing the rear substrate; a plurality of sustaining electrode pairs composed of X and Y electrodes; a light absorption reflection film including a first light absorption reflection film arranged between the adjacent sustaining electrode pairs and a second light absorption reflection film having a different width than that of the first light absorption reflection film, the second light absorption reflection film arranged on a lower surface of the first light absorption reflection film; and a front dielectric layer arranged on a lower surface of the front substrate to cover the X and Y electrodes and the light absorption reflection film.
Abstract:
A plasma display panel (PDP) in which high luminance images can be formed at low voltage. The PDP includes first and second substrates which with a predetermined space therebetween; a plurality of barrier ribs disposed between the first and second substrates, including longitudinal barrier ribs and transverse barrier ribs having a height 10˜50% lower than the longitudinal barrier ribs in a direction towards the first substrate and connecting the longitudinal barrier ribs, the plurality of barrier ribs defining a plurality of discharge cells together with the first and second substrates; a plurality of pairs of sustain electrodes crossing the longitudinal barrier ribs; and a plurality of address electrodes to cross the pairs of sustain electrodes; and a fluorescent layer formed in each of the discharge cells.