Abstract:
A method for improving joint strength between a first and second member comprising the steps of: applying a sealant material including a matrix material at least partially encasing rigid components to the first and second members; joining the first and second members upon an application of force that is applied through the use of one or more fasteners; wherein a compressive force is applied to the exterior surface of both the first and second members by the one or more fasteners while the rigid components apply an internal tension force acting opposite of the compression force to the interior surface of both the first and second members proximate to the fastener to form a mechanical lock thereby reducing slippage and generally maintaining the joint in position.
Abstract:
A device and method for the protection of a first member and second member from corrosion by utilizing a connector that bonds the members without allowing direct contact of the members.
Abstract:
A method for improving joint strength between a first and second member comprising the steps of: applying a sealant material including a matrix material at least partially encasing rigid components to the first and second members; joining the first and second members upon an application of force that is applied through the use of one or more fasteners; wherein a compressive force is applied to the exterior surface of both the first and second members by the one or more fasteners while the rigid components apply an internal tension force acting opposite of the compression force to the interior surface of both the first and second members proximate to the fastener to form a mechanical lock thereby reducing slippage and generally maintaining the joint in position.
Abstract:
A baffle for sealing a vehicle structure, comprising a carrier with an interior body portion characterized by a plurality of spaced-apart members, providing voids, and an expandable material, that may also have openings, disposed on the carrier which, upon expansion, fills a vehicle cavity and covers the interior body portion and each of the voids.
Abstract:
The present invention is predicated upon the provision of systems and methods for reinforcement of a structural member. More particularly, the present invention is predicated upon unique carrier configurations and application of reinforcing material thereto. In one configuration, the application of reinforcing material is achieved without the use of fasteners, adhesives, or both, for placement, locating and restrictive movement of the reinforcing material onto the carrier.
Abstract:
A device for reinforcing, baffling or sealing a vehicle structure that includes hinge structures for allowing the member to be moveable within a cavity and free of any spring effect during movement.
Abstract:
Described embodiments relate to a method of manufacturing a sound absorption material. The method comprises: forming a low density fibrous web to act as porous bulk absorber, the fibrous web containing a proportion of bi-components fibers, each bi-component fiber having a core material and a sheath material around the core material; applying a thin facing later to the low density fibrous web, wherein the facing layer is adhesively compatible with the sheath material; heating the fibrous web to a temperature sufficient to soften the sheath material of at least some of the bi-component fibers; and pressing the facing layer and fibrous web together under low pressure such that at least part of the facing layer contacts the softened sheath material of at least some of the bi-component fibers to form an adhesive bond between the facing layer and the fibrous web.
Abstract:
The present invention relates to a reinforcement member (13) for a vehicle, particularly an electric vehicle, which comprises at least one profile (1) each with an axial extension (11) and a perimeter (12) and with at least one, preferably a multitude, of structure-improvement-part(s) (2-4) provided at, at least, a section of the perimeter (12) of the profile(s) (1). The present invention also relates to an automotive part (8) comprising the reinforcement member (13) and an electric vehicle (10).
Abstract:
A structural reinforcement for an article including a carrier (10) that includes: (i) a mass of polymeric material (12) having an outer surface; and (ii) at least one fibrous composite insert (14) or overlay (960) having an outer surface and including at least one elongated fiber arrangement (e.g., having a plurality of ordered fibers). The fibrous insert (14) or overlay (960) is envisioned to adjoin the mass of the polymeric material in a predetermined location for carrying a predetermined load that is subjected upon the predetermined location (thereby effectively providing localized reinforcement to that predetermined location). The fibrous insert (14) or overlay (960) and the mass of polymeric material (12) are of compatible materials, structures or both, for allowing the fibrous insert or overlay to be at least partially joined to the mass of the polymeric material. Disposed upon at least a portion of the carrier (10) may be a mass of activatable material (126). The fibrous insert (14) or overlay (960) may include a polymeric matrix that includes a thermoplastic epoxy.
Abstract:
The invention relates to the field of structural reinforcement, sealing, damping, baffling, or the like of elements, preferably of hollow structures or cavities, by means of a thermally expandable composition comprising (i) a polymer component; (ii) azodicarbonamide; and (iii) a metal oxide powder capable of catalyzing thermal decomposition of azodicarbonamide at elevated temperature, wherein at least about 90 wt.-% of particles within the metal oxide powder have a particle size of at most about 200 μm determined by sieve analysis; wherein the weight ratio of the azodicarbonamide to the metal oxide powder is at least about 5.0, preferably at least about 10, more preferably at least about 15, still more preferably at least about 16.50, preferably about 17, and yet more preferably at least about 20; preferably at most about 80; more preferably at most about 70, still more preferably at most about 60, yet more preferably at most about 50, even more preferably at most about 40, most preferably at most about 30. The thermally expandable composition leads to low odor formation and low ammonia emission during and after the foaming process.