Abstract:
A haptic mouse is configured to provide various kinds of haptic input. In some embodiments, the mouse has first and second housing portions and an actuator operable to provide haptic output by moving the first housing portion with respect to the second housing portion so as to tangentially displace skin or alter hand posture of a user's hand. In various embodiments, the mouse has a force sensor, an actuator, and a controller operable to determine an amount of force exerted on the haptic mouse, simulate a mouse click if the amount of the force exceeds a threshold, and adjust the threshold upon receiving an instruction. In numerous embodiments, the mouse has a housing, a friction adjustment mechanism operable to alter friction between the housing and a surface by adjusting an amount of a material in contact with the surface, and a controller operable to provide a haptic output by signaling the friction adjustment mechanism.
Abstract:
One embodiment of the disclosure includes an input module. The input module includes a switch, a rotatable and translatable input member operably connected to the switch and configured to actuate the switch, and an electrical contact operably connected to the switch and in electrical communication with the input member. During operation, the electrical connection between the input member and the electrical contact is maintained during translation and rotation of the input member. The input module may be used with a variety of electronic devices and can be used by a user to provide input to those devices.
Abstract:
A method is performed at a computing system that includes a first housing with a primary display and a second housing at least partially containing a physical keyboard and a touch-sensitive secondary display. The method includes: displaying, on the primary display, a first user interface for an application executed by the computing system. The method also includes: displaying, on the touch-sensitive secondary display, a second user interface, the second user interface comprising a set of one or more affordances corresponding to the application. The method further includes: detecting a notification and, in response to detecting the notification, concurrently displaying, in the second user interface, the set of one or more affordances corresponding to the application and at least a portion of the detected notification on the touch-sensitive secondary display. In some embodiments, the detected notification is not displayed on the primary display.
Abstract:
A computer input system includes a mouse including a housing having an interior surface defining an internal volume and a sensor assembly disposed in the internal volume. A processor is electrically coupled to the sensor assembly and a memory component having electronic instructions stored thereon that, when executed by the processor, causes the processor to determine an orientation of the mouse relative to a hand based on a touch input from the hand detected by the sensor assembly. The mouse can also have a circular array of touch sensors or lights that detect hand position and provide orientation information to the user.
Abstract:
An input device can include a housing defining an internal volume and a lower portion, the lower portion defining an aperture, an input sensor disposed in the internal volume, and a haptic assembly disposed in the internal volume. The haptic assembly can include an actuator and a foot coupled to the actuator and aligned with the aperture. The actuator can be configured to selectively extend the foot through the aperture to vary a sliding resistance of the input device on a support surface.
Abstract:
An input device can include a housing defining an internal volume and a lower portion, the lower portion defining an aperture, an input sensor disposed in the internal volume, and a haptic assembly disposed in the internal volume. The haptic assembly can include an actuator and a foot coupled to the actuator and aligned with the aperture. The actuator can be configured to selectively extend the foot through the aperture to vary a sliding resistance of the input device on a support surface.
Abstract:
An electronic device may be provided with control circuitry, wireless transceiver circuitry, and a display. The electronic device may be used to provide information to a user in response to being pointed at a particular object. The control circuitry may determine when the electronic device is pointed at a particular object using wireless control circuitry and/or motion sensor circuitry. In response to determining that the electronic device is pointed at a particular object, the control circuitry may take suitable action. This may include, for example, displaying information about an object when the electronic device is pointed at the object, displaying control icons for electronic equipment when the electronic device is pointed at the electronic equipment, and/or displaying a virtual object when the electronic device is pointed at real world object.
Abstract:
An example method is performed at a device with a display and a biometric sensor. While the device is in a locked state, the method includes displaying a log-in user interface that is associated with logging in to a first and second user account. While displaying the log-in user interface, the method includes, receiving biometric information, and in response to receiving the biometric information: when the biometric information is consistent with biometric information for the first user account and the first user account does not have an active session, displaying a prompt to input a log-in credential for the first user account; and when the biometric information is consistent with biometric information for the second user account and the second user account does not have an active session on the device, displaying a prompt to input a log-in credential for the second user account.
Abstract:
An electronic watch may include a tactile switch and/or one or more sensors for detecting rotational and translational inputs. The watch may include a display configured to produce graphical outputs that may change in response to rotational inputs, translational inputs, and/or touch inputs received at the display. The watch include a crown positioned along an exterior of the watch enclosure and a shaft coupled to the crown and extending into the enclosure. The tactile switch and/or the one or more sensors may be used to detect rotational and/or translational inputs provided at the crown.
Abstract:
A physical keyboard can be used to collect user input in a typing mode or in a tracking mode. To use a tracking mode, first movement data is detected for a hand of a user in relation to a physical keyboard at a first location. A determination is made that the first movement data is associated with a tracking movement. In response to determining that the movement type is associated with the tracking movement, a tracking mode is initiated. User input is provided based on the movement data and in accordance with the tracking mode. Contact data and non-contact data is used to determine a user intent, and a user instruction is processed based on the user intent.