摘要:
Embodiments of this invention provide a method to fabricate an electrical contact. The method includes providing a substrate of a compound Group III-V semiconductor material having at least one electrically conducting doped region adjacent to a surface of the substrate. The method further includes fabricating the electrical contact to the at least one electrically conducting doped region by depositing a single crystal layer of germanium over the surface of the substrate so as to at least partially overlie the at least one electrically conducting doped region, converting the single crystal layer of germanium into a layer of amorphous germanium by implanting a dopant, forming a metal layer over exposed surfaces of the amorphous germanium layer, and performing a metal-induced crystallization (MIC) process on the amorphous germanium layer having the overlying metal layer to convert the amorphous germanium layer to a crystalline germanium layer and to activate the implanted dopant. The electrical contact can be a source or a drain contact of a transistor.
摘要:
A method of forming a stressed thin film on a substrate includes forming a plurality of islands on a viscous layer that is present on a surface of a substrate. Adjacent islands are bridged with a stressor layer. The structure is annealed at an elevated temperature above the glass flow temperature of the viscous layer to transfer at least a portion of the stress from the stressor layer to the underlying islands. The bridges are then removed to expose the stressed islands of thin film on the substrate.
摘要:
A method of forming a stressed thin film on a substrate includes the steps of depositing a thin film of silicon on a first substrate and transforming the first substrate into a porous substrate. The porous substrate containing the thin film of silicon is then transformed into a stressed state such that at least a portion of the stress is transferred to the thin film. The thin film may be under compressive stress or tensile stress. For example, volumetric expansion of the porous substrate imparts tensile stress to the thin film while volumetric contraction of the porous substrate imparts compressive stress to the thin film. The porous substrate containing the stressed thin film of silicon is then bonded to a second substrate. The porous substrate is removed so as to deposit the stressed thin film of silicon to the second substrate.
摘要:
A method of forming a stressed thin film on a substrate includes forming a plurality of islands on a viscous layer that is present on a surface of a substrate. Adjacent islands are bridged with a stressor layer. The structure is annealed at an elevated temperature above the glass flow temperature of the viscous layer to transfer at least a portion of the stress from the stressor layer to the underlying islands. The bridges are then removed to expose the stressed islands of thin film on the substrate.