Abstract:
A vapor compression system includes a timer and a controller for periodically starting up the system during the off-season periods (primarily non-cooling months) in which the system would normally be shut down. This provides periodic lubrication to the compressor components and prevents severe flooded starts due to excessive accumulation of refrigerant in the compressor (compressor oil sump in particular) and other system components. Provision is also made to sequentially turn on and off system components such as the compressor, the evaporator fan and the condenser fan to enhance the system operation. The timing sequences are provided for the time intervals between the startups, as well as the off-season operation cycle times.
Abstract:
A refrigerant system may utilize CO2 as a refrigerant. Should the sensed operating conditions indicate that the refrigerant might be approaching a condition at which the refrigerant could solidify, corrective actions are taken to prevent refrigerant transformation to a solid thermodynamic state. In one embodiment, hot gas from a compressor discharge is bypassed to a location upstream of the evaporator. In another embodiment, the high-side pressure of a refrigerant system is adjusted. In yet another embodiment, an additional charge of refrigerant is delivered on demand into the refrigerant system. In still another embodiment, a defrost cycle is initiated on demand. These embodiments prevent the refrigerant from approaching the conditions at which it may solidify.
Abstract:
A refrigerant system is provided with tandem compressors. A tandem compressor arrangement includes at least two compressors operating in parallel and having at least one common manifold. A control may operate the compressors either simultaneously, or in some predetermined sequence to provide control over refrigerant system capacity. At least one of the tandem compressors is provided with a pulse width modulation control on a suction line. In this manner, the amount of refrigerant, compressed by the compressor, can be precisely controlled to exactly meet thermal load demands in the conditioned space.
Abstract:
A refrigerant system control operates tandem compressors. If one of the monitored system conditions does not change as each of the tandem compressors or associated components is brought on line, then a determination is made that the respective component is malfunctioning. A refrigerant system can also be additionally equipped with other functions and components, such as variable speed drive, economizer circuit, unloader bypass, and reheat circuit. In case of a reheat circuit, the system can consist of single or multiple compressors. The control algorithm can also be updated such that that particular malfunctioning component is eliminated from the operational sequence.
Abstract:
A refrigerant system utilizes environmentally friendly natural refrigerant such as carbon dioxide. A pressure relief mechanism such as pressure relief valve is incorporated into the refrigerant system design to allow for at least some amount of refrigerant to be released to atmosphere to provide safe operation or comply with agency regulations if pressure within the refrigerant system exceeds a certain limit. This release can occur during refrigerant system storage, transportation or operation. A detection device such as an electrical circuit is included into the refrigerant system design to provide an indication that pressure relief valve has opened, such that the determination can be made by a refrigerant system control or an operator whether the refrigerant system needs to be recharged and whether it can continue its normal operation, narrow its operational envelope or shut down until the refrigerant charge can be restored.
Abstract:
A parallel-flow evaporator has a liquid trap for regulating velocity of refrigerant delivered to an evaporator from an expansion device. In its simplest configuration, the liquid trap is a u-shaped pipe positioned vertically and connected to an inlet manifold of the evaporator. By providing a liquid trap, a small amount of liquid refrigerant separates from the vapor phase at certain conditions. This separated liquid will tend to collect in the trap, and reduce a flow cross-sectional area of the line leading to the inlet manifold of the evaporator. As this cross-sectional area decreases, the velocity of the refrigerant passing through the line will increase. In this sense, as a small amount of liquid phase separates out, it will ensure that the velocity of the remaining refrigerant will increase such that further separation will be significantly reduced or entirely avoided. As a result, homogeneous refrigerant flow is provided to the evaporator, resulting in its performance enhancement and system reliability improvement.
Abstract:
Various control methods are disclosed for removing moisture from the external surfaces of an evaporator in a refrigerant system to avoid moisture entering a conditioned space. In one embodiment, the evaporator fan is driven in a reverse direction, and the air is guided to the outdoor environment. In other embodiments, a supplemental exhaust fan is utilized in conjunction with the evaporator fan. Also, a reheat circuit, hot gas bypass circuit, or specific features of a heat pump unit may be utilized to more efficiently perform the moisture removal.
Abstract:
A diagnostic method for testing a fan or pump assembly in a refrigerant system includes steps of operating a controller to periodically shut down, or reduce fan or pump speed for a short period of time, while continuing to operate the refrigerant system. Changes in an operating condition such as pressure, temperature, electric current or operating speed are monitored. If expected changes do not occur, a determination can be made that a fan or pump assembly is malfunctioning.
Abstract:
There is provided a refrigerant system. First and second transducers are positioned within the refrigerant system to measure respective operational characteristics. There is a timer that determines that a shutdown has occurred for a specified period of time; and a comparator that compares an output of the first transducer to an output of the second transducer after that specified time and determines whether the outputs of the first and second transducers are within a tolerance band of each other. If the readings are not within tolerance band, then the transducer failure is detected and a warning/alarm requiring operator attention is issued.
Abstract:
A tandem compressor system is utilized that receives refrigerant from a common suction manifold, and from a common evaporator. From the compressors, the refrigerant passes to a plurality of condensers, with each of the condensers being associated with a separate zone for heat rejection, preferably at different temperature levels. Each of the condensers is associated with at least one of the plurality of compressors. A reheat coil is associated with the evaporator to improve comfort level in the environment to be conditioned. Multiple reheat circuits associated with separate condensers are employed to provide various stages of reheat or to condition separate environments. By utilizing the common evaporator, a plurality of condensers, and the reheat coils, the ability to independently control temperature, humidity and amount of heat rejection to a number of zones is achieved without the requirement of having dedicated circuits with multiple additional components. Thus, the overall system cost and complexity is significantly reduced and its operational and control flexibility is improved.