摘要:
According to one aspect of the invention, a method is provided in which a group of users in a system that employs a retransmission mechanism such as Automatic Repeat Request (ARQ) is divided into multiple sub-groups of users. Each user is assigned a number of channels for transmission of information. The number of channels assigned to each user is determined based, at least in part, on the number of the sub-groups and a number of channels available in the system. Transmission intervals are alternated among the multiple sub-groups such that only one of the sub-groups of users is allowed to transmit information during any transmission interval. An idle interval during which a particular user in the first group does not transmit information is used as a waiting period for acknowledgement of a previous transmission by the particular user.
摘要:
Techniques for performing erasure detection and power control for a transmission without error detection coding are described. For erasure detection, a transmitter transmits codewords via a wireless channel. A receiver computes a metric for each received codeword, compares the computed metric against an erasure threshold, and declares the received codeword to be “erased” or “non-erased”. The receiver dynamically adjusts the erasure threshold based on received known codewords to achieve a target level of performance. For power control, an inner loop adjusts the transmit power to maintain a received signal quality (SNR) at a target SNR. An outer loop adjusts the target SNR based on the status of received codewords (erased or non-erased) to achieve a target erasure rate. A third loop adjusts the erasure threshold based on the status of received known codewords (“good”, “bad”, or erased) to achieve a target conditional error rate.
摘要:
Noise and interference can be independently measured in a multiple user Orthogonal Frequency Division Multiplexing (OFDM) system. Co-channel interference is measured in a frequency hopping, multiple user, OFDM system by tracking the sub-carriers assigned to all users in a particular service area or cell. The composite noise plus interference can be determined by measuring the amount of received power in a sub-carrier whenever it is not assigned to any user in the cell. A value is stored for each sub-carrier in the system and the value of noise plus interference can be a weighted average of the present value with previously stored values. The noise component can be independently determined in a synchronous system. In the synchronous system, all users in a system may periodically be prohibited from broadcasting over a sub-carrier and the received power in the sub-carrier measured during the period having no broadcasts.
摘要:
Techniques are provided to support multi-carrier code division multiple access (MC-CDMA) in an orthogonal uplink of a wireless communication system. A method of wireless multi-carrier communications comprises dividing sub-carriers on an uplink into non-overlapping groups, allocating a time-frequency block including a hopping duration and a non-overlapped group, respectively, assigning a different set of orthogonal codes to each user, spreading data (or pilot) symbols of each user over the allocated time-frequency block, wherein the data (or pilot) symbols of each user are spread using the different set of orthogonal codes assigned to each user, mapping each data (or pilot) symbol to a modulation symbol in the time-frequency block, generating an orthogonal waveform based on the mapped symbols, and transmitting the orthogonal waveform.
摘要:
In a single-carrier frequency division multiple access (SC-FDMA) system that utilizes interleaved FDMA (IFDMA) or localized FDMA, multiple transmitters may transmit their pilots using time division multiplexing (TDM), code division multiplexing (CDM), interleaved frequency division multiplexing (IFDM), or localized frequency division multiplexing (LFDM). The pilots from these transmitters are then orthogonal to one another. A receiver performs the complementary demultiplexing for the pilots sent by the transmitters. The receiver may derive a channel estimate for each transmitter using an MMSE technique or a least-squares technique. The receiver may receive overlapping data transmissions sent on the same time-frequency block by the multiple transmitters and may perform receiver spatial processing with spatial filter matrices to separate these data transmissions. The receiver may derive the spatial filter matrices based on the channel estimates for the transmitters and using zero-forcing, MMSE, or maximal ratio combining technique.
摘要:
Techniques are provided to support multi-carrier code division multiple access (MC-CDMA) in an orthogonal uplink of a wireless communication system. A method of wireless multi-carrier communications comprises dividing sub-carriers on an uplink into non-overlapping groups, allocating a time-frequency block including a hopping duration and a non-overlapped group, respectively, assigning a different set of orthogonal codes to each user, spreading data (or pilot) symbols of each user over the allocated time-frequency block, wherein the data (or pilot) symbols of each user are spread using the different set of orthogonal codes assigned to each user, mapping each data (or pilot) symbol to a modulation symbol in the time-frequency block, generating an orthogonal waveform based on the mapped symbols, and transmitting the orthogonal waveform.
摘要:
Systems and methodologies are described that facilitate performing scalable transmission power offsets for an access terminal to ensure that a listening base station can hear a signal transmitted from the access terminal. The power offset is generated as a function of a reverse link channel quality indicator feedback loop to permit the access terminal to adjust transmission power sufficiently without excessive power boosting, such as can occur under a static power-boosting scheme. Monitored parameters associated with channel quality indications may comprise erasure rate indicators provided by base stations in response to CQI signals from the access terminal, as well as mean received power levels associated with superframe preamble received at the access terminal.
摘要:
For quasi-orthogonal multiplexing in an OFDMA system, multiple (M) sets of traffic channels are defined for each base station. The traffic channels in each set are orthogonal to one another and may be pseudo-random with respect to the traffic channels in each of the other sets. The minimum number of sets of traffic channels (L) is used to support a given number of (U) terminals selected for data transmission, where M≧L≧1 and U≧1. Each terminal transmits data and pilot symbols on its traffic channel. A base station receives data transmissions from all terminals and may perform receiver spatial processing on received symbols with spatial filter matrices to obtain detected data symbols. The spatial filter matrix for each subband may be derived based on channel response estimates for all terminals transmitting on that subband.
摘要:
Techniques are provided to support multi-carrier code division multiple access (MC-CDMA) in an orthogonal uplink of a wireless communication system. A method of wireless multi-carrier communications comprises dividing sub-carriers on an uplink into non-overlapping groups, allocating a time-frequency block including a hopping duration and a non-overlapped group, respectively, assigning a different set of orthogonal codes to each user, spreading data (or pilot) symbols of each user over the allocated time-frequency block, wherein the data (or pilot) symbols of each user are spread using the different set of orthogonal codes assigned to each user, mapping each data (or pilot) symbol to a modulation symbol in the time-frequency block, generating an orthogonal waveform based on the mapped symbols, and transmitting the orthogonal waveform.
摘要:
A method and apparatus to determine whether a transmission was successfully received in a multiple access communication system is claimed. First and second encoded data packets are received and decoded. The first and second data packets are then re-encoded, and correlated to determine whether the first and second re-encoded data packets are the same. If there is a high degree of correlation, an indicator of acknowledgement is transmitted to indicate that there is a high degree of correlation between the first and second re-encoded data packets. If there is a low degree of correlation, a determination is made that the previously transmitted indicator of acknowledgement was correctly received.