摘要:
Noise and interference can be independently measured in a multiple user Orthogonal Frequency Division Multiplexing (OFDM) system. Co-channel interference is measured in a frequency hopping, multiple user, OFDM system by tracking the sub-carriers assigned to all users in a particular service area or cell. The composite noise plus interference can be determined by measuring the amount of received power in a sub-carrier whenever it is not assigned to any user in the cell. A value is stored for each sub-carrier in the system and the value of noise plus interference can be a weighted average of the present value with previously stored values. The noise component can be independently determined in a synchronous system. In the synchronous system, all users in a system may periodically be prohibited from broadcasting over a sub-carrier and the received power in the sub-carrier measured during the period having no broadcasts.
摘要:
A channel structure has at least two channel sets. Each channel set contains multiple channels and is associated with a specific mapping of the channels to the system resources available for data transmission. Each channel set may be defined based on a channel tree having a hierarchical structure. To achieve intra-cell interference diversity, the channel-to-resource mapping for each channel set is pseudo-random with respect to the mapping for each remaining channel set. In each scheduling interval, terminals are scheduled for transmission on the forward and/or reverse link. The scheduled terminals are assigned channels from the channel sets. Multiple terminals may use the same system resources and their overlapping transmissions may be separated in the spatial domain. For example, beamforming may be performed to send multiple overlapping transmissions on the forward link, and receiver spatial processing may be performed to separate out multiple overlapping transmissions received on the reverse link.
摘要:
Transmission patterns for pilot symbols transmitted from a mobile station or base station are provided. The pattern allows for improved receipt of the pilot symbols transmitted for frequency selective channels and users. In addition, schemes for improving the ability to multiplex pilot symbols without interference and/or biasing from different mobile stations over the same frequencies and in the same time slots.
摘要:
Transmission patterns for pilot symbols transmitted from a mobile station or base station are provided. The pattern allows for improved receipt of the pilot symbols transmitted. In addition, schemes for improving the ability to multiplex pilot symbols without interference and/or biasing from different mobile stations over the same frequencies and in the same time slots.
摘要:
A channel structure has at least two channel sets. Each channel set contains multiple channels and is associated with a specific mapping of the channels to the system resources available for data transmission. Each channel set may be defined based on a channel tree having a hierarchical structure. To achieve intra-cell interference diversity, the channel-to-resource mapping for each channel set is pseudo-random with respect to the mapping for each remaining channel set. In each scheduling interval, terminals are scheduled for transmission on the forward and/or reverse link. The scheduled terminals are assigned channels from the channel sets. Multiple terminals may use the same system resources and their overlapping transmissions may be separated in the spatial domain. For example, beamforming may be performed to send multiple overlapping transmissions on the forward link, and receiver spatial processing may be performed to separate out multiple overlapping transmissions received on the reverse link.
摘要:
Methods and apparatuses are disclosed that utilize the discrete Fourier transform of time domain responses to generate beamforming weights for wireless communication. In addition, in some embodiments frequency subcarriers constituting less than all of the frequency subcarriers allocated for communication to a user may utilized for generating the beamforming weights.
摘要:
Transmission patterns for pilot symbols transmitted from a mobile station or base station are provided. The pattern allows for improved receipt of the pilot symbols transmitted. In addition, schemes for improving the ability to multiplex pilot symbols without interference and/or biasing from different mobile stations over the same frequencies and in the same time slots.
摘要:
Transmission patterns for pilot symbols transmitted from a mobile station or base station are provided. The patterns may be selected according to a location of the mobile station with respect to one or more antennas are provided. In some aspects, the pattern may be selected based upon the distance between the mobile station and the one or more antennas. In other aspect, the pattern may be based upon whether the mobile station is in handoff.
摘要:
To receive packets with interference cancellation, block transmissions for the packets are received on time-frequency blocks used by these packets. Receiver spatial processing is performed on input symbols to obtain detected symbols. Each packet is demodulated and decoded based on all detected symbols obtained for all block transmissions received for the packet. For each packet that is decoded correctly, the transmission for the packet is terminated, the interference due to the packet is estimated, and the estimated interference is subtracted from the input symbols for all time-frequency blocks used by the packet. Receiver spatial processing is performed on the interference-canceled symbols to obtain new detected symbols for all time-frequency blocks used by all correctly decoded packets. Each packet decoded in error and overlapping at least partially with any correctly decoded packet may be demodulated and decoded based on all detected symbols available for that packet.
摘要:
To select a rate for a transmitter in a communication system, a receiver obtains a channel response estimate and a received SINR estimate for the transmitter, e.g., based on a pilot received from the transmitter. The receiver computes a hypothesized SINR for the transmitter based on the channel response estimate and the received SINR estimate. The receiver then selects a rate for the transmitter based on (1) the hypothesized SINR and (2) characterized statistics of noise and interference at the receiver for the transmitter, which may be given by a probability density function (PDF) of SINR loss with respect to the hypothesized SINR. A look-up table of rate versus hypothesized SINR may be generated a priori for the PDF of SINR loss. The receiver may then apply the hypothesized SINR for the transmitter to the look-up table, which then provides the rate for the transmitter.