Abstract:
A liquid crystal antenna unit and a liquid crystal phased array antenna are provided. The liquid crystal antenna unit includes: a first substrate, a second substrate opposite to the first substrate, a liquid crystal layer between the first substrate and the second substrate, a transmission line on a first surface and extending in a first direction along the first surface, a first antenna oscillator on the first surface and arranged as an elongated dipole extending in a second direction along the first surface, a second antenna oscillator on a surface of the second substrate distal to the first substrate and at a position corresponding to the first antenna oscillator, and a ground electrode on a surface of the first substrate distal to the second substrate.
Abstract:
A chip, a method of operating a chip, and a detection device are provided. The chip includes a detection cavity and a working electrode, the detection cavity is configured to be capable of containing a plurality of droplets, and the working electrode is arranged in the detection cavity and is configured to regularly arrange the plurality of droplets in the detection cavity along an extending direction of the working electrode.
Abstract:
A waveguide feed substrate and a manufacturing method thereof, and an antenna system and a manufacturing method thereof are provided. The waveguide feed substrate comprises: a first base substrate provided with a receiving groove; and a waveguide feeder embedded in the receiving groove and provided with a first side disposed at a bottom of the receiving groove, a second side disposed opposite to the first side, a third side disposed on a first side wall of the receiving cell, and a fourth side disposed on a second side wall of the receiving cell; wherein an opening is disposed in the second side, and an upper surface of the second side is flush with an upper surface of the first base substrate.
Abstract:
A digital microfluidic chip and a digital microfluidic system. The digital microfluidic chip comprises: an upper substrate and a lower substrate arranged opposite to each other; multiple driving circuits and multiple addressing circuits disposed between the lower substrate and the upper substrate; and a control circuit, electrically connected to the driving circuits and the addressing circuits. The control circuit is configured to apply, in a driving stage, a driving voltage to each driving circuit, such that a droplet is controlled to move inside a droplet accommodation space according to a set path, measure, in a detection stage, after a bias voltage is applied to each addressing circuit, a charge loss amount of each addressing circuit, and to determine the position of the droplet according to the charge loss amount. The charge loss amount of each addressing circuit is related to the intensity of received external light.
Abstract:
Embodiments disclose a touch display screen and a driving method thereof, which relates to a field of display, capable of decreasing a thickness of a panel and a width of the bezel and reducing a cost. The touch display screen according to the embodiments of the present disclosure comprises a color film substrate and an array substrate, wherein common electrodes, which has a shape of strip, are disposed on the color film substrate or the array substrate, one or more of the common electrodes act as a touch driving electrodes; the touch display screen further includes: a driving circuit, connected with the common electrodes acting as the touch driving electrodes, for applying touch driving pulses to the common electrodes acting as the touch driving electrodes and applying a common voltage in a period during which no touch driving pulse is applied.
Abstract:
A display panel, a manufacturing method thereof and a display device are provided. The display panel comprises: a first substrate and a second substrate which are opposite to each other to form a cell through a sealant. A first sealant-blocking structure configured to prevent the sealant from extending toward an edge of the display panel is formed on the first substrate and/or the second substrate. The display panel effectively prevents the sealant from extending toward the edge of the display panel by forming the first sealant-blocking structure on an outside of the sealant, and hence achieves an ultra-narrow frame or unframed design.
Abstract:
A mask and a method of fabricating spacers (2) using the mask (1). The mask (1) comprises a light transmitting region including an array of light transmitting holes (230), a light non-transmitting region and a phase shifting layer (240) formed in one of two adjacent light transmitting holes (230) of the mask for shifting phrase of lights passing through the light transmitting holes (230). Thus, a light intensity can be reduced or lowered to zero when the lights pass through a diffractive region of the two adjacent light transmitting holes (230). Therefore, a bridging effect between two adjacent spacers (2) is alleviated and even avoided during fabricating the spacers (2).