Abstract:
Phosphorescent organometallic materials are provided, comprising at least one 3-arylacetylacetone ligand. Processes for making such materials, and to organic light emitting devices comprising the materials, are also provided.
Abstract:
An organic light emitting device is provided. The device has an anode, a cathode, and an organic layer disposed between the anode and the cathode. The organic layer comprises an emissive material having a transition metal and two or three bidentate ligands, which may be photoactive ligands. The bidentate photoactive ligands may be bound to the transition metal through a carbon-metal bond and a nitrogen-metal bond to form a cyclometallated ring. The organic layer may have the formula LXa-(L)bM, wherein X is a linking group that links two or more ligand L and M is a metal.
Abstract:
An area of research in the field of bioinformatics deals with the identification of similarities within one, or between two DNA sequences. Current techniques are quite slow and many matches are missed. The invention provides a faster and more sensitive solution, by using “optimised spaced seeds” to perform these biological sequence homology searches. Various techniques are shown for identifying seeds which are optimized to improve the sensitivity or speed of the searching. In the preferred embodiment, optimized spaced seeds are determined by the parameters of the search and independent of the actual databases being searched (for example, using the length and weight of the spaced seed, as well as the probability of a hit in a similar region). Thus, these optimized seeds can be stored in libraries which are accessed as required.
Abstract:
The present invention relates to organic light emitting devices (OLEDs), and more specifically to efficient OLEDs comprising an array of pixels and having reduced pixel shrinkage. The devices of the present invention comprise further relates to materials for use as emissive materials which give reduced shrinkage when incorporated into an OLED.
Abstract:
The present invention relates to efficient organic light emitting devices (OLEDs), and more specifically to phosphorescent organic materials used in such devices. More specifically, the present invention relates to materials with improved stability and efficiency when incorporated into an OLED.
Abstract:
An organic light emitting device is provided. The device has an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer further comprises an emissive material having the structure: M may be a metal having an atomic weight greater than 40. R3 may be a substituent having a Hammett value less than about −0.17, between about −0.15 and 0.05, or greater than about 0.07. R5 may be H or any substituent. A may be a 5 or 6 member heteroaryl ring system. “m” may be at least 1. “n” may be at least zero. (X-Y) may be an ancillary ligand. The emissive material itself is also provided. The emissive material may have improved stability, and may provide a saturated blue emission.
Abstract:
The present invention provides a new type of laterally container, which is composed of bottom platform, corner posts, front walls and end walls and container top. At the container top, there is a middle top beam, one or more top beams mounted symmetrically at both sides of the middle top beam. The other ends of the middle top are linked to the lateral beams of the container body. One spacing wall is mounted along the longitudinal central line of the bottom platform, the lower end of the spacing wall is linked to the bottom platform and the upper end of the spacing wall is linked to the container top, and its front and back ends linked respectively to the front and end walls. The platform is mounted aslant. This structure has advantages of high strength, which can prevent the distortion of the container body, and two individual spaces for containing goods that can also protect the goods from waggling during transportation. This type of container has simple construction and low costs, and it can be loaded and unloaded conveniently.
Abstract:
Compounds containing 2-azatriphenylene are provided. In particular, compounds containing a 2-azatriphenylene core having an additional aromatic group are provided. The compounds provided may be emissive or non-emissive materials. The compounds may be used in organic light emitting devices, particularly as host materials, hole blocking layer materials, or emitting dopants. Devices comprising 2-azatriphenylene containing compounds may demonstrate improved stability and efficiency.
Abstract:
Novel heteroleptic iridium carbene complexes are provided, which contain at least two different carbene ligands. Selective substitution of the carbene ligands provides for phosphorescent compounds hat are suitable for use in a variety of OLED devices.
Abstract:
Novel heteroleptic iridium complexes are disclosed. The complexes contain a phenyl pyridine ligand and another ligand containing a dibenzofuran, dibenzothiophene, dibenzoselenophene, or carbazole linked to an imidazole or benzimidazole fragment. These complexes are useful materials when incorporated into OLED devices.