Abstract:
A method is provided in one embodiment and includes receiving a network address associated with a wireless device at a first network element in which the network address identifies the wireless device on a first network, and receiving user credentials from a directory service associated with a second network. The user credentials identify a user associated with the wireless device on the second network. The method further includes associating the user credentials with the network address, and communicating a request message to a second network element. The request message includes a request for a user identifier identifying the user on a third network. The method further includes receiving a response message from the second network element including the user identifier, associating the user credentials with the user identifier, and storing the association of the user credentials and the user identifier in a whitelist.
Abstract:
In one aspect, a method for enabling EPCS in a network includes receiving a request from a network device to establish a connection to the network, wherein the request indicates an emergency event and at least one user equipment associated with the emergency event; prioritizing, for the network device, access to the network based on the request in accordance with a resource allocation policy comprising a plurality of access levels associated with a plurality of EPCS groups; allocating network resources in accordance with the resource allocation policy to the network device, wherein the one or more network resources are configured to modify a set of attributes of the network device to grant the network device an increased priority related to the emergency event; and transmitting a message to the network device to indicate authorization for the network device to establish a connection with the network according to the increased priority.
Abstract:
Presented herein are techniques to facilitate dual-connectivity support for a user equipment (UE) in a hybrid cell virtualized Radio Access Network (vRAN) architecture. In one example, a method may include obtaining, by a node of a mobile network via a first cell of a RAN, a request for a UE to connect to the mobile network via the first cell in which the RAN includes at least one shared cell and at least one unique cell; determining that the UE is allowed for dual-connectivity operation; and providing a policy to the UE, wherein the policy identifies, for each of one or more applications, one of a shared cell operating mode or a unique cell operating mode that the UE is to utilize for each of the one or more applications.
Abstract:
Presented herein are techniques to facilitate fast roaming between a mobile network operator-public (MNO-public) wireless wide area (WWA) access network and an enterprise private WWA access network. In one example, a method is provided that may include generating, by an authentication node, authentication material for a user equipment (UE) based on the UE being connected to a public WWA access network, wherein the public WWA access network is associated with a mobile network operator, and the authentication node and the UE are associated with an enterprise entity; obtaining, by the authentication node, an indication that the UE is attempting to access a private WWA access network associated with the enterprise entity; and providing, by the authentication node, the authentication material for the UE, wherein the authentication material facilitates connection establishment between the UE and the private WWA access network.
Abstract:
Dynamic Open Radio Access Network Radio Unit (O-RU) sharing between multiple tenant Open RAN Distributed Units (O-DU) may be provided. A Near Real Time RAN Intelligent Controller (nRT-RIC) may receive tenant policies for a first tenant and a second tenant. The nRT-RIC may then determine initial sharing templates for the first tenant and the second tenant based on the tenant policies. The nRT-RIC may send the initial sharing templates to a first tenant Distributed Unit (DU) and a second tenant DU. The nRT-RIC may receive operating metrics from the first tenant DU and the second tenant DU. The nRT-RIC may then determine operational factors based on the operating metrics. The nRT-RIC may alter an allocation of resources between the first tenant and the second tenant based on the operational factors. Finally, the nRT-RIC may send the altered allocation of resources to the first tenant DU and the second tenant DU.
Abstract:
Dynamic Open Radio Access Network Radio Unit (O-RU) sharing between multiple tenant Open RAN Distributed Units (O-DU) may be provided. A Near Real Time RAN Intelligent Controller (nRT-RIC) may receive tenant policies for a first tenant and a second tenant. The nRT-RIC may then determine initial sharing templates for the first tenant and the second tenant based on the tenant policies. The nRT-RIC may send the initial sharing templates to a first tenant Distributed Unit (DU) and a second tenant DU. The nRT-RIC may receive operating metrics from the first tenant DU and the second tenant DU. The nRT-RIC may then determine operational factors based on the operating metrics. The nRT-RIC may alter an allocation of resources between the first tenant and the second tenant based on the operational factors. Finally, the nRT-RIC may send the altered allocation of resources to the first tenant DU and the second tenant DU.
Abstract:
A method is provided that includes obtaining an access request for a device to access a visited access network, the access request including an authentication identifier for the device including an identity for the device and a realm comprising a network identifying portion; determining a re-write rule for the realm by querying a database based on an identity type of the device and the network identifying portion of the realm, the database including a plurality of re-write rules for a plurality of networks and a plurality of identity types; re-writing the realm based on the re-write rule using the identity for the device to generate a re-written realm; obtaining, based on the re-written realm, an address for an authentication server of an identity provider associated with the device; and performing an authentication with the authentication server using the authentication identifier to authenticate the device for the visited access network.
Abstract:
Presented herein are techniques to facilitate dual-connectivity support for a user equipment (UE) in a hybrid cell virtualized Radio Access Network (vRAN) architecture. In one example, a method may include obtaining, by a node of a mobile network via a first cell of a RAN, a request for a UE to connect to the mobile network via the first cell in which the RAN includes at least one shared cell and at least one unique cell; determining that the UE is allowed for dual-connectivity operation; and providing a policy to the UE, wherein the policy identifies, for each of one or more applications, one of a shared cell operating mode or a unique cell operating mode that the UE is to utilize for each of the one or more applications.
Abstract:
Techniques are described herein for providing radio resource ownership indicators in charging records for a charging function. In one example, a method may include determining, by a session management node of a mobile network, that a user equipment is utilizing a particular radio resource of a mobile network resource for a Protocol Data Unit (PDU) session of the user equipment, wherein the mobile network resource is capable of being utilized via a plurality of radio resources and the particular radio resources is associated with an enterprise entity; and reporting charging information for the PDU session of the user equipment to a charging function of the mobile network to facilitate storing a charging record for the user equipment that is to include an identifier of the enterprise entity that is associated with the particular radio resource.
Abstract:
Techniques are described herein for providing radio resource ownership indicators in charging records for a charging function. In one example, a method may include determining, by a session management node of a mobile network, that a user equipment is utilizing a particular radio resource of a mobile network resource for a Protocol Data Unit (PDU) session of the user equipment, wherein the mobile network resource is capable of being utilized via a plurality of radio resources and the particular radio resources is associated with an enterprise entity; and reporting charging information for the PDU session of the user equipment to a charging function of the mobile network to facilitate storing a charging record for the user equipment that is to include an identifier of the enterprise entity that is associated with the particular radio resource.