Abstract:
An object positioning solves said problems encountered in machine vision, which employs electro-optic (EO) image sensors enhanced with integrated laser ranger, global positioning system/inertial measurement unit, and integrates these data to get reliable and real time object position. An object positioning and data integrating system comprises EO sensors, a MEMS IMU, a GPS receiver, a laser ranger, a preprocessing module, a segmentation module, a detection module, a recognition module, a 3D positioning module, and a tracking module, in which autonomous, reliable and real time object positioning and tracking can be achieved.
Abstract:
The present invention provides a method and system for an innovative design of the automatic stabilization and pointing control of a device based on the MEMS technology, which is small enough and has acceptable accuracy to be integrated into many application systems, such as, laser pointing systems, telescopic systems, imaging systems, and optical communication systems. The stabilization mechanism configuration design is based on utilization of AGNC commercial products, the coremicro IMU and the coremicro AHRS/INS/GPS Integration Unit. The coremicro AHRS/INS/GPS Integration Unit is used as the processing platform core for the design of the MEMS coremicro IMU based stabilization mechanism.
Abstract translation:本发明提供了一种用于基于MEMS技术的设备的自动稳定和指向控制的创新设计的方法和系统,该MEMS技术足够小并且具有可接受的精度被集成到许多应用系统中,例如激光指向系统 伸缩系统,成像系统和光通信系统。 稳定机构配置设计是基于AGNC商用产品,核心IMU和核心AHRS / INS / GPS集成单元的利用。 核心微型AHRS / INS / GPS集成单元用作基于MEMS芯片IMU的稳定机制设计的处理平台核心。
Abstract:
A method and system for multi-tracking among independent individuals without a monitoring center, where an individual is a person, a vehicle, or any other property, enables the individuals to be networked in a group and each individual to search and track other individuals of interest. The portable multi-tracking system is also capable of tracking personnel inside a building, where a self-contained positioning device provides continuous carrier's position information. In the open area a GPS (Global Positioning System) unit is activated to provide precision absolute position data which can be blended with the self-contained data to improve the accuracy and robustness of the positioning services. Thus the present invention provides excellent position tracking outside a building.
Abstract:
A method of converting a geospatial database into a compressive database for multiple dimensional data storage by constructing computer storage data language or format includes the steps of partitioning the geospatial database into a plurality of data segments; selecting a specific point position in each of the data segments as a reference point position (RPP), and then forming a set of reference point positions for the original geospatial database; providing a coordinate origin point for each of the data segments; converting the geodetic coordinates of the original geospatial database within each of the data segments into corresponding local coordinates, and converting the set of reference point positions and the local geodetic coordinates of each of the data segments into pixel coordinates in form of a pixel coordinate system to form a specific digital map database.
Abstract:
An object positioning solves said problems encountered in machine vision, which employs electro-optic (EO) image sensors enhanced with integrated laser ranger, global positioning system/inertial measurement unit, and integrates these data to get reliable and real time object position. An object positioning and data integrating system comprises EO sensors, a MEMS IMU, a GPS receiver, a laser ranger, a preprocessing module, a segmentation module, a detection module, a recognition module, a 3D positioning module, and a tracking module, in which autonomous, reliable and real time object positioning and tracking can be achieved.
Abstract:
A method of transmitting position data via cellular communication system includes the steps of receiving position data from a position data producer such as a GPS, an INS, or a GPS/INS integrated system, attaching the position data to a location registration data stream, and sending the position data along with the location registration data to a base station. This method takes advantages of the existing location updating procedure in a cellular network system to transmit precision position data of a mobile station. It does not need a dialing up to transmit position data. By utilizing this method, the position data of the mobile station can be delivered to the base station or cellular network whenever the mobile station is powered on.
Abstract:
A processing method for motion measurement, which is adapted to apply to output signals proportional to rotation and translational motion of a carrier, respectively from rate sensors and acceleration sensors, is more suitable for emerging MEMS rate and acceleration sensors. Compared with a conventional IMU, the processing method utilizes a feedforward open-loop signal processing scheme to obtain highly accurate motion measurements by means of signal digitizing, temperature control and compensation, sensor error and misalignment calibrations, attitude updating, and damping control loops, and dramatically shrinks the size of mechanical and electronic hardware and power consumption, meanwhile, obtains highly accurate motion measurements.
Abstract:
An angular rate amplifier, which is adapted to amplify useful signals, which are proportional to rotation motion of a carrier, and to suppress noise, which is not proportional to rotation motion of a carrier, in output signals from an angular rate producer, including a MEMS (MicroElectronicMechanicalSystem) angular rate sensor. Compared with a conventional amplifiers, a noise shield and a co-resident trans impedance amplifier are utilized to achieve high signal/noise ratio. Furthermore, the angular rate producer and the noise shield and a co-resident trans impedance amplifier are used in a micro inertial measurement unit (IMU) to improve performance of the micro inertial measurement unit to form highly accurate, digital angular increments, velocity increments, position, velocity, attitude, and heading measurements of a carrier under dynamic environments.
Abstract:
A core inertial measurement unit, which is adapted to apply to output signals proportional to rotation and translational motion of a carrier, respectively from angular rate sensors and acceleration sensors, is employed with MEMS rate and acceleration sensors. Compared with a conventional IMU, the processing method utilizes a feedforward open-loop signal processing scheme to obtain highly accurate motion measurements by means of signal digitizing, temperature control and compensation, sensor error and misalignment calibrations, attitude updating, and damping control loops, and dramatically shrinks the size of mechanical and electronic hardware and power consumption, meanwhile, obtains highly accurate motion measurements.
Abstract:
A microelectromechanical system (MEMS) for measuring angular rate of a carrier includes an angular rate sensor unit, microelectronic circuitry, and signal processing to obtain highly accurate, sensitive, stable angular rate measurements of the carrier under dynamic environments. Wherein, the angular rate sensor unit receives dither driver signals, capacitive pickoff excitation signals, and displacement restoring signals to output angle rate signals in response to the motion of the carrier and dither motion signals; the central circuitry receives the angle rate signals in response to the motion of the carrier and dither motion signals to output angular rate signals and digital low frequency inertial element displacement signals; a digital signal processing system analyzes digital low frequency inertial element displacement signals to feed back the dither drive signals to the angular rate sensor unit.