Abstract:
This invention in one aspect relates to a pixel structure. In one embodiment, the pixel structure includes a scan line formed on a substrate and a data line formed over the substrate defining a pixel area, a switch formed inside the pixel area on the substrate, a shielding electrode having a first portion and a second portion extending from the first portion, and formed over the scan line, the data line and the switch, where the first portion is overlapped with the switch and the second portion is overlapped with the data line, and a pixel electrode having a first portion and a second portion extending from the first portion, and formed over the shielding electrode in the pixel area, where the first portion is overlapped with the first portion of the shielding electrode so as to define a storage capacitor therebetween and the second portion has no overlapping with the second portion of the shielding electrode.
Abstract:
An array substrate and method for manufacturing the same is provided, wherein a data line is composed of first and second segments connected by a contact pad. First and second insulation layers are disposed between the first segment of the data line and a shielding electrode. In addition, the first insulation layer is disposed between the second segment of the data line and a gate line in their overlapping area. Accordingly, the coupling effect between the conductive layers can be reduced. For example, the RC delay problem due to parasitic capacitance between the shielding electrode and the data line is solved. As a result of the design of the two insulator layers between the first segment of the data line and the shielding electrode, the shorting between the conductive layers can also be simultaneously solved and the product yield can be increased.
Abstract:
The invention provides an LCD panel with main slits corresponding to alignment protrusions. The gate lines are shielded by the electrode portion and do not overlap the main slits. Because the gate line and the major slits do not overlap, the liquid crystal molecule arrangement of the liquid crystal layer is not affected by the operating voltage of the gate line.
Abstract:
In a transflective liquid crystal display having a transmission area and the reflection area, the transmissive electrode is connected to a switching element to control the liquid crystal layer in the transmission area, and the reflective electrode is connected to the switching element via a separate capacitor to control the liquid crystal layer in the reflection area. The separate capacitor is used to shift the reflectance in the reflection area toward a higher voltage end in order to avoid the reflectance inversion problem. In addition, an adjustment capacitor is connected between the reflective electrode and a different common line. The adjustment capacitor is used to reduce or eliminate the discrepancy between the gamma curve associated with the transmittance and the gamma curve associated with the reflectance.
Abstract:
In a transflective liquid crystal display having a transmission area and the reflection area, the transmissive electrode is connected to a switching element to control the liquid crystal layer in the transmission area, and the reflective electrode is connected to the switching element via a separate capacitor to control the liquid crystal layer in the reflection area. The separate capacitor is used to shift the reflectance in the reflection area toward a higher voltage end in order to avoid the reflectance inversion problem. In addition, an adjustment capacitor is connected between the reflective electrode and a different common line. The adjustment capacitor is used to reduce or eliminate the discrepancy between the gamma curve associated with the transmittance and the gamma curve associated with the reflectance.
Abstract:
A pixel structure including an active device and a pixel electrode is provided. The pixel electrode is electrically connected with the active device and has a plurality of alignment domains. Each of the alignment domains of the pixel electrode has one group of alignment slits parallel with one another, wherein each group of the alignment slits includes a plurality of first alignment slits with a first length and the first alignment slits are majority of each group of the alignment slits. At least one group of the alignment slits includes at least a second alignment slit with a second length longer than the first length of the first alignment slits.
Abstract:
The invention provides an LCD panel with main slits corresponding to alignment protrusions. The gate lines are shielded by the electrode portion and do not overlap the main slits. Because the gate line and the major slits do not overlap, the liquid crystal molecule arrangement of the liquid crystal layer is not affected by the operating voltage of the gate line.
Abstract:
An LCD panel includes a first substrate, a second substrate, alignment protrusions and a liquid crystal layer between the first substrate and the second substrate. The first substrate includes pixel units arranged in an array. Each of the pixel units has at least one reflection area and one transmittance area. The first substrate has concaves in the reflection areas. The second substrate is above the first substrate. The first substrate or the second substrate has at least one padding layer in the reflection area. The alignment protrusions having approximately the same height are disposed on the second substrate and located in centers of each of the reflections and the transmittance areas. In the reflection area, a group of the alignment protrusions are in the concaves to keep a gap from the first substrate. The other group of the alignment protrusions outside of the concaves contact with the first substrate directly.
Abstract:
A multi-domain liquid crystal display (LCD) including an active device array substrate, an opposite substrate, an electric field shielding layer, and a liquid crystal layer is provided. The active device array substrate has a plurality of pixels, wherein each pixel has a pixel electrode. The opposite substrate has a common electrode disposed between the opposite substrate and the active device array substrate. The electric field shielding layer is disposed on a part of each pixel electrode. The liquid crystal layer is disposed between the active device array substrate and the opposite substrate. The liquid crystal layer corresponding to each pixel is divided into a low-voltage domain and a high-voltage domain having the same cell gap, wherein the position of the electric field shielding layer is corresponding to the position of the low-voltage domain. Color shift of the multi-domain LCD is improved effectively at oblique viewing angles.
Abstract:
An active matrix substrate including a substrate, a plurality of scan lines, a plurality of data lines and a plurality of sub-pixels is provided. The scan lines and the data lines are disposed on the substrate, and define a plurality of sub-pixel regions distributed in a delta arrangement. The sub-pixels corresponding to the sub-pixel regions are disposed on the substrate. The sub-pixels are electrically connected with corresponding scan lines and corresponding data lines. Between two sub-pixel regions corresponding to any two adjacent sub-pixels at a same side of one scan line, there are two data lines. Each sub-pixel includes an active device and a pixel electrode. The active device is electrically connected with a corresponding scan line and a corresponding data line. The pixel electrode is electrically connected with the active device, and extends from the sub-pixel region corresponding to the sub-pixel to a position over the data line.