摘要:
A method and apparatus for detecting concealed objects in computed tomography data are disclosed. Sheet-shaped objects such as sheet explosives can be detected by a CT scanning system, in particular, a CT baggage scanning system. The invention analyzes CT voxels in a subregion in proximity to the sheet object to determine if the sheet object is concealed in an electronic device or is “sandwiched” within an item such as a book or magazine. To detect electronic concealment, the number of voxels in a subregion that contains the object having a density above a predetermined threshold is counted and the ratio of that number of voxels to the number of object voxels is computed. If the ratio exceeds a threshold, then it is concluded that the object is concealed in electronics. In response, the CT scanning system can alter discrimination parameters to allow the object to be classified as a threat. For “sandwich” concealment, layers on opposite sides of a sheet object are examined. The mean and standard deviation of density values for the voxels are computed. Where the mean density exceeds a predetermined threshold and the standard deviation is below a different threshold, for at least one of the layers, then it is concluded that the sheet object is sandwiched within an innocuous object such as a magazine or a book.
摘要:
Sheet-shaped objects can be detected by analyzing a neighborhood of voxels surrounding a test voxel. If the density is sufficiently different, then the voxel is associated with a sheet object. Sheet objects can also be detected by eroding the CT data so as to eliminate voxels associated with thin objects. Remaining objects are then subtracted from the original data, leaving only thin sheet-shaped objects. If the number of voxels having densities below a predetermined threshold exceeds a predetermined number, then it is assumed that the test voxel is a surface voxel and is removed from the object. A connectivity process can be applied to voxels to combine them into objects after sheets are detected. A dilation function can then be performed to replace surface voxels. A corrected mass can be compared to mass thresholds. Bulk objects can be detected by a modified morphological connected components labeling (CCL) approach. A merging process can be used to reconnect related items. The system can also identify objects that contain liquids. The object detection rate and false alarm rate can be adjusted by adjusting individual object detection rates and/or false alarm rates.
摘要:
A method and apparatus for detecting and classifying objects in computed tomography (CT) data are disclosed. A connectivity process can be applied to voxels in the data to combine them into objects. A dilation function can then be performed on the eroded object to replace surface voxels removed by erosion. A corrected mass using the mean eroded density of the object can be computed and compared to mass thresholds to classify the object as to whether it poses a threat. Multiple mass thresholds can be used, each of which is associated with a particular density range based on the density of an expected threat object.
摘要:
A method and apparatus for detecting objects in computed tomography (CT) data are disclosed. Sheet-shaped objects such as sheet explosives can be detected by analyzing a neighborhood of voxels surrounding a test voxel. If the density of the test voxel is sufficiently different from the mean density of the neighboring voxels, then it is concluded that the test voxel is associated with a sheet object. Sheet objects can also be detected by eroding the CT data so as to eliminate voxels associated with thin objects. Remaining objects are then subtracted from the original data, leaving only thin sheet-shaped objects. Erosion of the data can be performed by identifying a neighborhood of voxels surrounding a voxel of interest. If the number of voxels having densities below a predetermined threshold exceeds a predetermined number, then it is assumed that the test voxel is a surface voxel and is removed from the object. A connectivity process can be applied to voxels to combine them into objects after sheets are detected to prevent sheets from being inadvertently removed from the data by erosion. A dilation function can then be performed on the eroded object to replace surface voxels removed by erosion. A corrected mass using the mean eroded density of the object can be computed and compared to mass thresholds to classify the object as to whether it poses a threat. Multiple mass thresholds can be used, each of which is associated with a particular density range based on the density of an expected threat object. Bulk objects can be detected by a modified morphological connected components labeling (CCL) approach which performs a series of erosion and dilation steps to separate adjacent objects in the data such that they can be individually labeled and analyzed. A merging process can be used to reconnect related items, such as multiple sticks, that were separated during an erosion step. The merging process allows multiple objects that would individually pass as non-threat items to be combined into a single item that is correctly classified as a threat. The system can also identify objects that contain liquids, if desired. The process of the invention can be carried out in multiple stages. The overall system performance, including overall object detection rate and false alarm rate, can be adjusted by adjusting individual object detection rates and/or false alarm rates.
摘要:
A method and apparatus for detecting objects in computed tomography (CT) data are shown. Specifically, the system can identify objects that contain liquids, if desired. A subregion that encloses an object is defined, and a top surface of the subregion is identified. Volume elements at the surfaces of the object are identified. If a ratio of top surface volume elements to the total number of surface volume elements is determined. If that ratio exceeds a predetermined threshold, then the object can be identified as including a liquid.
摘要:
An x-ray CT system has a detector which revolves about the object being imaged to acquire attenuation data from many different angles through a range of at least 180.degree.. The response of the detector has a time lag which as the detector revolves tends to blur the attenuation data. The acquired data is compensated for the resolution degradation by convolving the data with a function that is the inverse of a response function of the detector. An image can be reconstructed from this compensated data. However, this compensation process tends to reintroduce noise that was reduced by the blurring. As a result, a modified version of the detector response function is applied to the compensated data to reduce the noise without degrading the image resolution to an unacceptable level.
摘要:
A method of reducing image helical scanning; artifacts in computed tomography imaging systems divides 360.degree. of projection data into two half scans. Separate weighting functions are applied to the two half scans and they are reconstructed to an image per conventional reconstruction methods. The weighting functions provide effective interpolation and extrapolation of the half scan data to a slice plane centered in the projection data. In one embodiment, the weighting functions are feathered with a cubic function to remove weighting induced image artifacts.
摘要:
A CT apparatus reduces errors in projection data acquired in helical scanning. The imaged object moves concurrently along a translation axis and the x-ray beam is periodically translated with the imaged object so as to subtend a single predetermined volume element during the acquisition of one projection set of data for a first slice. The x-ray beam then returns to its starting position and tracks a second predetermined volume element within a next slice. The x-ray beam may be translated by moving the focal point or a collimator or a combination of both. Helical scans with a pitch requiring sweeping of the x-ray beam beyond the detector limits are accommodated by limiting the sweep to a lessor compliance distance. The angular rate of the sweep is held constant within this compliance distance during the sweep.
摘要:
Method and apparatus for producing CT images in which localized regions ("rub-out" regions) of the original object are not reproduced in order to eliminate artifacts generated by objects within those regions. An operator defines rub-out regions encompassing objects to be removed. For each projection, the rub-out regions of the object are determined and then merged together. A baseline is calculated for each modified rub-out region. That information is then utilized to modify the projection set, in effect eliminating the object from the set. The modified projection set is then used to create a reconstructed image in the normal way.
摘要:
Image reconstruction in a tomographic scanning system using a fan beam of radiation and a curved equi-angular detector array is facilitated by mapping signals from the curved array into a virtual equi-spaced planar detector array. Back projection image reconstruction algorithms are simplified by using the signals from the virtual equi-spaced planar array.