Abstract:
A standard dynamic range (SDR) image is received. Composer metadata is generated for mapping the SDR image to an enhanced dynamic range (EDR) image. The composer metadata specifies a backward reshaping mapping that is generated from SDR-EDR image pairs in a training database. The SDR-EDR image pairs comprise SDR images that do not include the SDR image and EDR images that corresponds to the SDR images. The SDR image and the composer metadata are encoded in an output SDR video signal. An EDR display operating with a receiver of the output SDR video signal is caused to render an EDR display image. The EDR display image is derived from a composed EDR image composed from the SDR image based on the composer metadata.
Abstract:
Given a sequence of images in a first codeword representation, methods, processes, and systems are presented for image reshaping using rate distortion optimization, wherein reshaping allows the images to be coded in a second codeword representation which allows more efficient compression than using the first codeword representation. Syntax methods for signaling reshaping parameters are also presented.
Abstract:
In some embodiments, an encoder device is disclosed to generate single-channel standard dynamic range/high dynamic range content predictors. The device receives a standard dynamic range image content and a representation of a high dynamic range image content. The device determines a first mapping function to map the standard dynamic range image content to the high dynamic range image content. The device generates a single channel prediction metadata based on the first mapping function, such that a decoder device can subsequently render a predicted high dynamic range image content by applying the metadata to transform the standard dynamic range image content to the predicted high definition image content.
Abstract:
Methods to improve the quality of coding high-dynamic range (HDR) signals in the ICtCp color space are presented. Techniques are described to a) generate optimum chroma Offset and scaling parameters, b) compute chroma mode decisions by optimizing mode selection distortion metrics based on chroma saturation and hue angle values, and c) preserving iso-luminance by maintaining in-gamut values during chroma down-sampling and chroma up-sampling operations.
Abstract:
A high dynamic range input video signal characterized by either a gamma-based or a perceptually-quantized (PQ) source electro-optical transfer function (EOTF) is to be compressed. Given a luminance range for an image-region in the input, for a gamma-coded input signal, a rate-control adaptation method in the encoder adjusts a region-based quantization parameter (QP) so that it increases in highlight regions and decreases in dark regions, otherwise, for a PQ-coded input, the region-based QP increases in the dark areas and decreases in the highlight areas.
Abstract:
Motion characteristics related to the images are determined. A motion characteristics metadata portion is generated based on the motion characteristics, and is to be used for determining an optimal FRC operational mode with a downstream device for the images. The images are encoded into a video stream. The motion characteristics metadata portion is encoded into the video stream as a part of image metadata. The video stream is transmitted to the downstream device. The downstream receives the video stream and operates the optimal FRC operational mode to generate, based on the images, additional images. The images and the additional images are rendered on a display device at an image refresh rate different from an input image refresh rate represented by images encoded in the video stream.
Abstract:
A high dynamic range input video signal characterized by either a gamma-based or a perceptually-quantized (PQ) source electro-optical transfer function (EOTF) is to be compressed. Given a luminance range for an image-region in the input, for a gamma-coded input signal, a rate-control adaptation method in the encoder adjusts a region-based quantization parameter (QP) so that it increases in highlight regions and decreases in dark regions, otherwise, for a PQ-coded input, the region-based QP increases in the dark areas and decreases in the highlight areas.
Abstract:
An intermediate bitstream generated by a first-stage transcoding system from an initial transmission package is received. The intermediate bitstream comprises base layer (BL) and enhancement layer (EL) signals. The combination of the BL and EL signals of the intermediate bitstream represents compressed wide dynamic range images. The BL signal of the intermediate bitstream alone represents compressed standard dynamic range images. A targeted transmission package is generated based on the intermediate bitstream. The targeted transmission package comprises BL and EL signals. The BL signal of the targeted transmission package may be directly transcoded from the BL signal of the intermediate bitstream alone.
Abstract:
Video data are coded in a coding-standard layered bit stream. Given a base layer (BL) and one or more enhancement layer (EL) signals, the BL signal is coded into a coded BL stream using a BL encoder which is compliant to a first coding standard. In response to the BL signal and the EL signal, a reference processing unit (RPU) determines RPU processing parameters. In response to the RPU processing parameters and the BL signal, the RPU generates an inter-layer reference signal. Using an EL encoder which is compliant to a second coding standard, the EL signal is coded into a coded EL stream, where the encoding of the EL signal is based at least in part on the inter-layer reference signal. Receivers with an RPU and video decoders compliant to both the first and the second coding standards may decode both the BL and the EL coded streams.
Abstract:
3D Images may be encoded into reduced resolution image data in a base layer and enhancement layer (EL) image data in one or more enhancement layers. Different types of data compositions may be used in the EL image data. The different types of data compositions may include unfiltered full resolution image data for one or both of left eye and right eye perspectives, or unfiltered full resolution image data for a color channel, e.g., luminance channel, or unfiltered full resolution image data for selected portions of image frames, or fallback data compositions. Based on deciding factors including bitrate requirements and bandwidth constraints, different types of data compositions may be alternatively used by an upstream device to deliver the best possible 3D image data to a wide variety of downstream devices. The upstream device may inform a downstream device of specific types of data compositions with EL image data descriptors.