摘要:
The present invention relates to an image processing apparatus which can restore, from a color and sensitivity mosaic image acquired using a CCD image sensor of the single plate type or the like, a color image signal of a wide dynamic range wherein the sensitivity characteristics of pixels are uniformized and each of the pixels has all of a plurality of color components. A sensitivity uniformization section uniformizes the sensitivities of pixels of a color and sensitivity mosaic image to produce a color mosaic image, and a color interpolation section interpolates color components of the pixels of the color mosaic image M to produce output images R, G and B. The present invention can be applied to a digital camera which converts a picked up optical image into a color image signal of a wide dynamic range.
摘要:
In order that a flow tube of a Coriolis flowmeter may be vibrated in a tertiary mode using one drive device, the drive device is arranged at an antinode in the center of tertiary mode vibration, and vibration detecting sensors are arranged at two antinodes other than the antinode in the center of tertiary mode vibration. Moreover, the displacement polarity of the drive device is opposite to that of the vibration detecting sensors so that the vibration phases of the flow tube are in a relation of mutually opposite phases. Furthermore, in a positive feedback loop of an excitation circuit portion for exciting tertiary mode vibration of the flow tube and the vibration detecting sensors , the excitation circuit portion is structured so that the relation between the displacement polarities where the vibration phases of the flow tube are opposite to one another is converted to the relation where the vibration phases of the flow tube are in phase.
摘要:
In order that a flow tube (3) of a Coriolis flowmeter (1) may be vibrated in the tertiary mode using one drive device (4), the drive device (4) is arranged at the antinode (H2) in the center of tertiary mode vibration, and vibration detecting sensors (5, 5) are arranged at two antinodes (H1, H3) other than the antinode (H2) in the center of tertiary mode vibration. Furthermore, the displacement polarity of the drive device (4) is opposite to those of the vibration detecting sensors (5, 5) so that the vibration phases of the flow tube (3) are in a relation of mutually opposite phases. Furthermore, in the positive feedback loop of the excitation circuit portion (9) for exciting tertiary mode vibration of the flow tube (3) and the vibration detecting sensors (5, 5), the excitation circuit portion (9) is structured so that the relation between the displacement polarities where the vibration phases of the flow tube (3) are opposite to one another is converted to the relation where the vibration phases of the flow tube (3) are in phase.
摘要:
An information recording apparatus into which an information recording medium is loaded, in which a label can be printed on a label surface of the loaded information recording medium is disclosed. The apparatus includes: an information recording means positioned on the recording surface side of the information recording medium; a print head positioned on the opposite side of the information recording means and the information recording medium and configured to print a label; and a print head moving means for moving the print head at a position shifted from the rotational center of the information recording medium in parallel with the radial direction of at least in the part of the information recording medium.
摘要:
A first array of disk drives overlaps with a second array of disk drives in a Redundant Array of Inexpensive Drives (RAID) system, in which the first and second arrays share at least one disk drive. A first stripe of data from a first client is stored in the first array, and a second stripe of data from a second client is stored in the second array. The shared disk drives are less than the number of drives needed to reconstruct a full stripe. Thus, in the event of a drive failure in the first array, the first client can reconstruct the first data stripe, but is never able to reconstruct the second stripe. Likewise, in the event of a drive failure in the second array, the second client can reconstruct the second data stripe, but is never able to reconstruct the first stripe.
摘要:
Described herewith is an optical disk manufacturing apparatus for reading recorded digital data from an optical disk, comprising an encryption unit for encrypting entered digital data according to a plurality of key information; an optical disk substrate manufacturing unit for manufacturing an optical disk substrate on which the encrypted digital data and key information are recorded in the form of physical form changes; a reflection film forming unit for forming a reflection film on the optical disk substrate; and a key information recording unit for recording key information on the optical disk substrate on which the reflection film is formed. The reflection factor of the optical disk is changed locally, thereby giving a jitter to the position information of each pit edge, and desired data is recorded additionally according to this jitter. Pits, etc. are disposed so as to be deviated from the track center towards the inner/outer region of the optical disk, thereby recording such sub-data as key information KY, etc.
摘要:
A first array of disk drives overlaps with a second array of disk drives in a Redundant Array of Inexpensive Drives (RAID) system, in which the first and second arrays share at least one disk drive. A first stripe of data from a first client is stored in the first array, and a second stripe of data from a second client is stored in the second array. The shared disk drives are less than the number of drives needed to reconstruct a full stripe. Thus, in the event of a drive failure in the first array, the first client can reconstruct the first data stripe, but is never able to reconstruct the second stripe. Likewise, in the event of a drive failure in the second array, the second client can reconstruct the second data stripe, but is never able to reconstruct the first stripe.
摘要:
Described herewith is an optical disk manufacturing apparatus for reading recorded digital data from an optical disk, comprising an encryption unit (22, 23) for encrypting entered digital data according to a plurality of key information; an optical disk substrate manufacturing unit 2 for manufacturing an optical disk substrate 4 on which the encrypted digital data and key information are recorded in the form of physical form changes; a reflection film forming unit 41 for forming a reflection film on the optical disk substrate 4; and a key information recording unit 7 for recording key information on the optical disk substrate on which the reflection film is formed. The reflection factor of the optical disk is changed locally, thereby giving a jitter to the position information of each pit edge, and desired data is recorded additionally according to this jitter. Pits, etc. are disposed so as to be deviated from the track center towards the inner/outer region of the optical disk 2, thereby recording such sub-data as key information KY, etc.
摘要:
A moving-picture conversion apparatus includes a block generator configured to generate blocks by dividing each frame forming moving picture data into the blocks, an amount-of-movement detector configured to detect an amount of movement of a subject corresponding to each block generated by the block generator, a block processor configured to receive the blocks generated by the block generator and information concerning the amount of movement detected by the amount-of-movement detector to perform decimation processing on the blocks, and a packing processor configured to receive the blocks decimated by the block processor to generate a packed block including pixel data forming the decimated blocks. The packing processor generates a packed block by correcting positions of pixels forming the packed block substantially to relative positions of the corresponding pixels forming an original image.
摘要:
An image processing apparatus that compresses moving-picture data includes an image converter configured to decimate pixels in individual blocks that are defined by dividing moving-picture frames, the image converter being configured to generate a plurality of layer signals using different sampled pixels corresponding to representative pixels in pixel decimation; and an encoder configured to receive input of the plurality of layer signals generated by the image converter and to generate encoded data based on the layer signals.