Ground Electrical Path From An MLCC Filter Capacitor On An AIMD Circuit Board To The Ferrule Of A Hermetic Feedthrough

    公开(公告)号:US20220032072A1

    公开(公告)日:2022-02-03

    申请号:US17505062

    申请日:2021-10-19

    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active end metallization that is electrically connected to the active electrode plates and a ground end metallization that is electrically connected to the at least one ground electrode plates of the chip capacitor. There is a ground path electrically extending between the ground end metallization of the chip capacitor and the ferrule. The ground path comprises at least a first electrical connection material connected directly to the first gold braze, and at least an internal ground plate disposed within the circuit board substrate with the internal ground plate being electrically connected to both the first electrical connection material and the ground end metallization of the chip capacitor. An active path electrically extends between the active end metallization of the chip capacitor and the lead wire.

    ECA Oxide-Resistant Connection To A Hermetic Seal Ferrule For An Active Implantable Medical Device

    公开(公告)号:US20210283404A1

    公开(公告)日:2021-09-16

    申请号:US17181542

    申请日:2021-02-22

    Abstract: A hermetically sealed feedthrough assembly for an active implantable medical device having an oxide-resistant electrical attachment for connection to an EMI filter, an EMI filter circuit board, an AIMD circuit board, or AIMD electronics. The oxide-resistant electrical attachment, including an oxide-resistant sputter layer 165 is disposed on the device side surface of the hermetic seal ferrule over which an ECA stripe is provided. The ECA stripe may comprise one of a thermal-setting electrically conductive adhesive, an electrically conductive polymer, an electrically conductive epoxy, an electrically conductive silicone, an electrically conductive polyimides, or an electrically conductive polyimide, such as those manufactured by Ablestick Corporation. The oxide-free electrical attachment between the ECA stripe and the filter or AIMD circuits may comprise one of gold, platinum, palladium, silver, iridium, rhenium, rhodium, tantalum, tungsten, niobium, zirconium, vanadium, and combinations or alloys thereof.

    LOW EQUIVALENT SERIES RESISTANCE RF FILTER CIRCUIT BOARD FOR AN ACTIVE IMPLANTABLE MEDICAL DEVICE

    公开(公告)号:US20200276440A1

    公开(公告)日:2020-09-03

    申请号:US16880392

    申请日:2020-05-21

    Abstract: A filtered feedthrough assembly includes a ferrule configured to be installed in an AIMD housing. An insulator is disposed within a ferrule opening. A conductive pathway is disposed within a passageway through the insulator. A filter capacitor is disposed on a device side having active and ground electrode plates disposed within a capacitor dielectric k greater than 0 and less than 1,000. A capacitor active metallization is electrically connected to the active electrode plates. A ground capacitor metallization is electrically connected to the ground electrode plates. The filter capacitor is the first filter capacitor electrically connected to the conductive pathway coming from a body fluid side into the device side. An active electrical connection electrically connects the conductive pathway to the capacitor active metallization. A ground electrical connection electrically connects the ground capacitor metallization to the ferrule. The filter capacitor is a flat-through or an X2Y attenuator filter capacitor.

Patent Agency Ranking