Abstract:
System and method embodiments are provided for high efficiency wireless communications. In an embodiment, a method in a network component for transmitting a frame of two different fast Fourier transform (FFT) sizes includes generating a frame, wherein the frame comprises orthogonal frequency-division multiplexing (OFDM) symbols in two different FFT sizes, wherein the frame comprises a first portion and a second portion, wherein the first portion comprises a first FFT size and the second portion comprises a second FFT size; and transmitting the frame during a single transmission opportunity.
Abstract:
Methods and devices for reducing traffic over a wireless link through the compression or suppression of high layer packets carrying predictable background data prior to transportation over a wireless link. The methods include intercepting application layer protocol packets carrying the predictable background data. In embodiments where the background data is periodic in nature, the high layer packets may be compressed into low-layer signaling indicators for communication over a low-layer control channel (e.g., an on off keying (OOK) channel). Alternatively, the high layer packets may be suppressed entirely (not transported over the wireless link) when a receiver side daemon is configured to autonomously replicate the periodic background nature according to a projected interval. In other embodiments, compression techniques may be used to reduce overhead attributable to non-periodic background data that is predictable in context.
Abstract:
A method for estimating communications channels includes determining, by a first device, channel significance information from a transmitting device, the channel significance information including information about communications channels carrying signals that are potentially significant interferers to the first device operating within range of the transmitting device, and estimating, by the first device, channel parameters of the communications channels identified as potentially significant interferers in accordance with the channel significance information. The method also includes transmitting, by the first device, the estimated channel parameters to one of the transmitting device and a controlling device.
Abstract:
A base station communicates with a plurality of user equipments (UEs) using a method. The method includes receiving, by the base station, a plurality of signals from a plurality of user equipments (UE) in communication with the base station. The method also includes using an iterative algorithm to estimate a matrix Λ of channel coefficients based on the received signals. The method further includes decoding, at the base station, the received signals using the estimated matrix Λ.
Abstract:
A method embodiment includes defining, by a network controller, one or more operation modes for a radio node in a network. The one or more operation modes includes a hyper transceiver mode, where the hyper transceiver mode configures a virtual transmission point to cooperatively communicate with a virtual reception point in accordance with neighborhood relations of a target radio node. The method further includes selecting one of the one or more operation modes for the radio node and signaling a selected operation mode to the radio node.
Abstract:
Soft information for achieving interference cancellation in downlink transmissions can be communicated over device-to-device (D2D) links, thereby allowing paired user equipments (UEs) to receive downlink transmissions over the same radio resources. More specifically, paired UEs that receive transmissions over the same time-frequency resources may exchange soft or hard information over D2D links in order to facilitate interference cancellation. The D2D links may be unidirectional or bidirectional, and may be established over in-band or out-of-band resources. Paired UEs may be in the same or different cells, and may receive their respective transmissions from the same or different transmit point. UEs may be paired with one another based on various criteria, e.g., interference cancellation capabilities, scheduling metrics, etc.
Abstract:
Embodiments are provided for early termination of an iterative process of determining channel directions and transmissions in multi-user multiple-input and multiple-output (MU-MIMO) communications systems. In an embodiment, a base station or a user equipment (UE) calculates a multi-user channel matrix using a first iteration of a null-space singular value decomposition (SVD) based iterative zero-forcing (I-ZF) algorithm for multi-user MU-MIMO. The base station or UE repeats updating the multi-user channel matrix using a next iteration of the algorithm and the multi-user channel matrix calculated in a previous iteration, until the diagonal elements of the multi-user channel matrix are greater than the off-diagonal elements by a predefined threshold. Upon determining that the diagonal elements are greater than the off-diagonal elements by the predefined threshold, a plurality of transmission signals are calculated using the last updated multi-user channel matrix.
Abstract:
A method for transmitting a waveform includes adjusting first multiplexing parameters of a first multi-carrier waveform to meet communications requirements of a communications system, generating a first signal in accordance with a first input bit block and a first modulation map, placing the first signal in a first subband, wherein the first subband is specified in accordance with the first adjusted multiplexing parameters, and transmitting the first subband.
Abstract:
Systems and methods of reporting wireless channel state information are provided. With the provided system and method, in a situation where there are multiple UEs which are close to each other, such that channel conditions may be similar for the multiple UEs, one of the UEs is configured to report interference information on a time pattern that has at least two measurement time durations for which interference is to be measured, for example, only for a subset of N consecutive measurement time durations. Other UEs may be configured to report interference information for different time patterns, for example different subsets of the N time slots.
Abstract:
It is desired to try to reduce power consumption in a transmit-and-receive point (TRP) in a wireless network. In some embodiments, to try to reduce overall power consumption, multiple (e.g. two) sets of radio frequency (RF) components are utilized by a TRP, one set having lower power consumption than the other set(s), and switching between the different sets during operation. For example, a TRP may include a first radio frequency unit (RFU) and a second RFU. The second RFU is designed to have higher power consumption than the first RFU. During operation, the TRP uses the second RFU to perform wireless communication in response to a trigger, and otherwise uses the first RFU to perform wireless communication.