Multiple TRPs and panels transmission with dynamic bandwidth for NR

    公开(公告)号:US11792874B2

    公开(公告)日:2023-10-17

    申请号:US16644352

    申请日:2018-09-07

    CPC classification number: H04W76/27 H04W74/0833

    Abstract: The present application is at least directed to an apparatus on a network including a non-transitory memory including instructions stored thereon for re-establishing a remote radio control (RRC) connection with a base station. The apparatus also includes a processor, operably coupled to the non-transitory memory, capable of executing an instruction of determining a radio link failure has occurred between a first bandwidth part (BWP) of the apparatus tuned to a base station. The processor also executes the instruction of initiating a random access (RA) procedure. The processor also executes the instruction of determining whether a configured contention-based physical random access channel (PRACH) resource overlaps with the first BWP. The process further executes the instruction of transmitting a RA preamble including the configured contention-based PRACH resource to the base station. The processor even further executes the instruction of receiving a RA response from the base station.

    TIME AND FREQUENCY TRACKING REFERENCE SIGNALS IN NEW RADIO

    公开(公告)号:US20220416972A1

    公开(公告)日:2022-12-29

    申请号:US17847644

    申请日:2022-06-23

    Abstract: In NR, a slot structure of a UE may be dynamic due the number of symbols of PDCCH and whether the slot has UL data, among other considerations. Additionally, to support multi-TRP/multi-panel/multi-BWP operation, a UE may be configured with multiple TRSs, and when a UE needs to receive multiple TRSs in the same slot, efficient signaling of the TRSs is important because of the high overhead involved. During a transmission, a UE may need to do beam switching when there is a beam failure, but existing systems do not have mechanisms for the UE to synchronize time and frequency with a new beam. Further, when a UE switches to a new beam, the effect on scheduled TRS transmission for old beams is unclear. Fine frequency and time tracking may also be required during an initial access procedure. Existing NR systems do not address how a UE may perform time and frequency tracking during an initial access procedure. Additionally, URLLC data may need to be transmitted to a UE immediately in an NR system. Existing NR systems do not address sending a TRS to a UE with URLLC data. Embodiments described herein address these and other issues.

    SYSTEMS AND METHODS FOR IMPROVED UPLINK COVERAGE

    公开(公告)号:US20210367713A1

    公开(公告)日:2021-11-25

    申请号:US17398970

    申请日:2021-08-10

    Abstract: Systems and method are specified to improve the reception of UL transmission, for example in power or coverage limited situations. A WTRU may modify procedures to increase the available signal energy for reception at an eNB and/or to make more efficient use of the available signal energy at the receiver for processing UL transmissions. Example methods for increasing UL link coverage may include modifying HARQ timing (e.g., shorter HARQ), using longer TTIs, use of dedicated PUSCH allocations, use of new PUSCH modulations, enhanced reference signal design, UL macro diversity reception for PUSCH, utilizing protocol reduction techniques, ensuring in-order packet delivery, and/or utilizing a configuration for coverage limited/power limited modes of operation. The proposed methods may be applied individually or in any combination.

    Systems and methods for improved uplink coverage

    公开(公告)号:US11121819B2

    公开(公告)日:2021-09-14

    申请号:US16599162

    申请日:2019-10-11

    Abstract: Systems and method are specified to improve the reception of UL transmission, for example in power or coverage limited situations. A WTRU may modify procedures to increase the available signal energy for reception at an eNB and/or to make more efficient use of the available signal energy at the receiver for processing UL transmissions. Example methods for increasing UL link coverage may include modifying HARQ timing (e.g., shorter HARQ), using longer TTIs, use of dedicated PUSCH allocations, use of new PUSCH modulations, enhanced reference signal design, UL macro diversity reception for PUSCH, utilizing protocol reduction techniques, ensuring in-order packet delivery, and/or utilizing a configuration for coverage limited/power limited modes of operation. The proposed methods may be applied individually or in any combination.

    Method and apparatus for multiple-input multiple-output operation

    公开(公告)号:US10355759B2

    公开(公告)日:2019-07-16

    申请号:US15375528

    申请日:2016-12-12

    Abstract: An eNode-B for a multi-user multiple-input multiple-output (MU-MIMO) downlink transmission to at least first and second wireless transmit/receive units (WTRUs) via resource elements (REs) of first and second spatial layers, the eNode-B comprising a transmitter and a processor, the processor coupled to the transmitter. The processor configured to generate the MU-MIMO downlink transmission including: allocating a first set of the REs, as first resources, to the first spatial layer for the first WTRU, and a second set of the REs, as second resources, to the second spatial layer for the second WTRU, mapping a first WTRU-specific reference signal (RS) associated with the first WTRU on a subset of the first resources, and a second WTRU-specific RS associated with the second WTRU on a subset of the second resources, muting allocated REs of the first resources overlapping with the subset of the second resources used for the second WTRU-specific RS, and allocated REs of the second resources overlapping with the subset of the first resources used for the first WTRU-specific RS. The transmitter configured to send the MU-MIMO downlink transmission.

Patent Agency Ranking