Abstract:
Mechanisms, assemblies, systems, tools, and methods incorporating the use of an offset drive shaft within an independently rotating member are provided. An example mechanism includes a base and a main shaft mounted to rotate relative to the base, a first drive shaft mounted inside the main shaft, and a first drive feature engaged with the first drive shaft. The main shaft includes a proximal end, a distal end, and a main shaft rotational axis defined therebetween. The first drive shaft is offset from the main shaft rotational axis. A first drive feature rotational axis is defined for the first drive feature and is fixed relative to the base as the main shaft rotates. The first drive feature rotates the first drive shaft.
Abstract:
A sterile adapter for coupling a surgical instrument and a surgical instrument manipulator includes a bottom component and a coupling component. The bottom component includes a bottom component opening with a bottom lip having a locking mechanism. The coupling component is rotatably coupled to the bottom component. The coupling component includes an engagement feature that engages the surgical instrument manipulator. The coupling component further includes a locking mechanism opening that engages the locking mechanism when the engagement feature has not engaged the surgical instrument manipulator. The coupling component may include a retention tab that is aligned with the keyway to insert the coupling component into the bottom component opening and then misaligned with the keyway to retain the coupling component in the bottom component opening. A ramp may be provided on a leading edge of a pocket to facilitate engaging the coupling component with the surgical instrument manipulator.
Abstract:
A teleoperated surgical system has an instrument manipulator that includes a first carriage driver and a second carriage driver that each provide independent rotary motion. Each carriage driver includes a first engagement feature. A surgical instrument includes two instrument drivers that each receive the rotary motion from one of the two carriage drivers. Each instrument driver includes a second engagement feature that engages the first engagement feature to positively couple the carriage driver to the instrument driver. The instrument drivers are rotationally coupled together. A manipulator controller controls rotation of the two carriage drivers and imparts a motion to the second carriage driver that is contrary to the rotation of the first carriage driver until the first engagement features positively engage the second engagement features. The surgical instrument may include an instrument shaft that can rotate indefinitely. The instrument drivers may be rotationally coupled to the instrument shaft.
Abstract:
An instrument sterile adapter (310) couples a surgical instrument (120) and an instrument carriage (130). The instrument sterile adapter (310) includes an instrument plate (430) that provides a first surface to receive the surgical instrument (120) and a latch plate (400) joined to the instrument plate (430). The latch plate (400) includes a second surface to receive the instrument carriage (130) and latch structures. Each latch structure has a carriage latch arm (410) that extends away from the second surface of the latch plate (400) and an instrument latch arm (405) joined to the carriage latch arm (410). The instrument latch arm (405) extends through the instrument plate (430) and away from the first surface of the instrument plate (430). A connecting member (425) flexibly connects the carriage latch arm (410) and the instrument latch arm (405) to a remainder of the latch plate (400). The connecting member (425) may be perpendicular to the latch arms (405). The latch arms (405) may engage fixed locking surfaces in the instrument carriage (130) and the surgical instrument (120).
Abstract:
An instrument sterile drape includes a plastic sheet and an instrument sterile adapter (ISA) coupled to the plastic sheet. The ISA includes a bottom plate located on a first side of the plastic sheet and a top plate located on a second side of the plastic sheet and joined to the bottom plate. The bottom plate includes a mounting surface that provides a first datum plane for mounting the ISA on a carriage that includes actuators and a plurality of landing pads that extend through the top plate to provide a second datum plane for a surgical instrument coupled to the ISA such that a distance between the carriage and the surgical instrument is controlled only by the bottom plate. The instrument sterile drape may include a pouch shaped to fit around the carriage with the ISA capturing the pouch between the top and bottom plates.
Abstract:
A remote center manipulator for use in minimally invasive robotic surgery includes a base link held stationary relative to a patient, an instrument holder, and a linkage coupling the instrument holder to the base link. First and second links of the linkage are coupled to limit motion of the second link to rotation about a first axis intersecting a remote center of manipulation. A parallelogram linkage portion of the linkage pitches the instrument holder around a second axis that intersects the remote center of manipulation. The second axis is not coincident with the first axis. Third and fourth links of the linkage are coupled to limit motion of the fourth link to rotation about a third axis intersecting the remote center of manipulation. The third axis is not coincident with either of the first and second axes. Various combinations of hardware-constrained remote center of motion robotic manipulators with redundant mechanical degrees of freedom are disclosed.
Abstract:
A robotic assembly is configured to support, insert, retract, and actuate a surgical instrument mounted to the robotic assembly. The robotic assembly includes an instrument holder base member, a motor housing moveably mounted to the instrument holder base member, a carriage drive mechanism operable to translate the motor housing along the instrument holder base member, a plurality of drive motors, and a plurality of output drive couplings driven by the drive motors. One or more of the drive motors includes one or more magnetic flux shields to inhibit magnetic interference with an adjacent drive motor and/or with an adjacent motor orientation sensor.
Abstract:
Embodiments of an instrument manipulator are disclosed. An instrument manipulator can include a track; a translational carriage coupled to ride along the track; a shoulder yaw joint coupled to the translational carriage; a shoulder pitch joint coupled to the shoulder yaw joint, the shoulder pith joint including an arm, a wrist mount coupled to the arm, struts coupled between the wrist mount and the shoulder yaw joint, and a shoulder pitch mechanism coupled to the arm; a yaw-pitch-roll wrist coupled to the wrist mount, the yaw-pitch-roll wrist including a yaw joint and a differentially driven pitch-roll joint; and an instrument mount coupled to the wrist. The various joints and carriages can be driven by motors.
Abstract:
Devices, systems, and methods for avoiding collisions between manipulator arms using a null-space are provided. In one aspect, the system calculates an avoidance movement using a relationship between reference geometries of the multiple manipulators to maintain separation between reference geometries. In certain embodiments, the system determines a relative state between adjacent reference geometries, determines an avoidance vector between reference geometries, and calculates an avoidance movement of one or more manipulators within a null-space of the Jacobian based on the relative state and avoidance vector. The joints may be driven according to the calculated avoidance movement while maintaining a desired state of the end effector or a remote center location about which an instrument shaft pivots and may be concurrently driven according to an end effector displacing movement within a null-perpendicular-space of the Jacobian so as to effect a desired movement of the end effector or remote center.