Abstract:
Various layer separation states are generated by the combination of a polyamide acid ester and a polyamide acid and a long residual image characteristic cannot be further improved merely by combining them. A liquid crystal display device comprises a substrate, a liquid crystal layer, and an orientation film placed between the substrate and the liquid crystal layer. The orientation film comprises a polyimide precursor having two or more components. In the polyimide precursor, an octanol-water partition coefficient is defined as log P and the difference in log P (Δ log P) between the two components having most distant log Ps is set so as to fall within a prescribed range.
Abstract:
According to one embodiment, a liquid crystal display panel includes a first substrate, a second substrate, a sealant and a liquid crystal layer. The first substrate includes a switching element and a pixel electrode. The second substrate includes a first organic insulating film in which a first trench portion is formed, a projection formed beneath the first organic insulating film, and a first barrier layer. The first barrier layer is formed continuously from an inside of the first trench portion to under the projection.
Abstract:
To prevent a phenomenon that an alignment film material is difficult to flow into the through-hole where a diameter of a through-hole for connecting between a pixel electrode and a source electrode is reduced.A liquid crystal display device comprising a TFT substrate having pixels each including a common electrode formed on an organic passivation film, an interlayer insulating film formed so as to cover the common electrode, a pixel electrode having a slit and formed on the interlayer insulating film, a through-hole formed in the organic passivation film and the interlayer insulating film, and a source electrode electrically conducted to the pixel electrode via the through-hole. A taper angle at a depth of D/2 of the through-hole is equal to or more than 50 degrees. The pixel electrode covers part of a side wall of the through-hole but does not cover the remaining part of the side wall of the through-hole. This configuration facilitates the alignment film material to flow into the through-hole, thereby solving a thickness unevenness of the alignment film in vicinity of the through-hole.
Abstract:
A liquid crystal display device includes a liquid crystal composition, a thin film transistor substrate as an insulation substrate on which a thin film transistor for controlling the orientation of the liquid crystal composition is provided, and a color filter substrate which seals the liquid crystal composition between itself and the thin film transistor substrate and controls a wavelength region of the transmitted light. The thin film transistor substrate includes a projection part extending from the thin film transistor substrate to the color filter substrate side, and a wall-like electrode on a wall surface of the projection part, which is one electrode for controlling the orientation of the liquid crystal composition. An insulation film and an orientation film are sequentially laminated on the wall-like electrode continuously from a surface parallel to a substrate surface.
Abstract:
According to one embodiment, a liquid crystal optical element according to one embodiment includes a substrate, a plurality of structures aligned at a prescribed pitch in each of a plurality of first areas, and a liquid crystal layer arranged across the plurality of first areas and a second area surrounding each of the plurality of first areas. The liquid crystal layer includes first liquid crystal molecules arranged in the first areas between the adjacent structures and aligned along the structures, and second liquid crystal molecules having the long axes aligned in the same direction in the second area.
Abstract:
To realize a stretchable electronic device having high reliability. The configuration of the present invention is as follows. In a stretchable electronic device in which an active area and a terminal area are continuously formed, a scanning line having a meander structure and a signal line having a meander structure are formed in the active area, terminal wirings and terminals are formed on a base material extending in a second direction and aligned in a first direction in the terminal area, and the base material configures a reinforcing material continuous in the first direction in the part where the terminal is formed.
Abstract:
A liquid crystal display device comprising a TFT substrate having pixels each including a common electrode formed on an organic passivation film, an interlayer insulating film formed so as to cover the common electrode, a pixel electrode having a slit and formed on the interlayer insulating film, a through-hole formed in the organic passivation film and the interlayer insulating film, and a source electrode electrically conducted to the pixel electrode via the through-hole. A taper angle at a depth of D/2 of the through-hole is equal to or more than 50 degrees. The pixel electrode covers part of a side wall of the through-hole but does not cover the remaining part of the side wall of the through-hole. This configuration facilitates the alignment film material to flow into the through-hole, thereby solving a thickness unevenness of the alignment film in vicinity of the through-hole.
Abstract:
According to one embodiment, a liquid crystal optical element includes an optical waveguide including a first main surface and a second main surface opposed to the first main surface, a first alignment film disposed on the second main surface, a first liquid crystal layer which overlaps the first alignment film, which comprises a first cholesteric liquid crystal, and which reflects at least part of light incident through the optical waveguide toward the optical waveguide, a second alignment film which overlaps the first liquid crystal layer, and a second liquid crystal layer which overlaps the second alignment film, which comprises a second cholesteric liquid crystal, and which reflects at least part of light incident through the optical waveguide toward the optical waveguide.
Abstract:
According to an aspect, a stretchable device includes: a resin base member; and a signal line and a strain gauge stacked on the resin base member. The resin base member includes: a plurality of bodies disposed separately from each other; and a plurality of hinges that couple the bodies while meandering. The hinges each include: a plurality of bends that bend and are disposed between the bodies; and a base that linearly extends to couple one of the bodies to a corresponding one of the bends. The signal line includes: a bend signal line stacked on the bends; and a base signal line stacked on the base. The base signal line has an occupied area per unit length in a length direction of the signal line larger than the bend signal line when viewed in a stacking direction in which the signal line is stacked on the resin base member.
Abstract:
According to one embodiment, a photovoltaic cell device includes a transparent substrate including a first side surface, a second side surface, and a third side surface, a first liquid crystal layer, a second liquid crystal layer, a first photovoltaic cell opposed to the first side surface, a second photovoltaic cell opposed to the second side surface, and a third photovoltaic cell opposed to the third side surface. The first liquid crystal layer comprises a first reflective surface. The second liquid crystal layer comprises a second reflective surface. In plan view, an angle formed by a normal of the first reflective surface and a normal of the second reflective surface is greater than 0° but less than 180°.