Abstract:
Provided is a radio communication mobile station device capable of preventing a transmission delay when a transmission data amount is increased in a radio communication system where persistent scheduling is performed. In this device, an MCS selection unit (104) selects a first MCS if the transmission data amount accumulated in a buffer of a data control unit (105) is smaller than a threshold value and selects a second MCS having a higher MCS level than the first MCS if the transmission data amount is not smaller than the threshold value. Thus, in a mobile station (100), data encoded and modulated according to the first MCS is transmitted during a normal state when the transmission data amount is small, and data encoded and modulated according to the second MCS having a higher MCS level than the first MCS is transmitted when the transmission data amount is increased to a large amount.
Abstract:
A base station apparatus may include a plurality of antenna element groups that each have a plurality of antenna elements arranged in a vertical direction. A reception weight combining section generates a combined signal for each antenna element group by multiplying a signal received by each antenna element of the group with a weight and combining the weighted signals of the antenna element group. A selection section measures reception power of the combined signal for each antenna element group and selects an antenna element group based on the measured reception powers. A transmission weight combining section multiplies a transmit signal with a weight applied by the reception weight combining section to a signal received by an antenna element of the selected antenna element group, and a diversity transmission section transmits the transmit signal from the selected antenna element group.
Abstract:
A base station apparatus may include a plurality of antenna element groups that each have a plurality of antenna elements arranged in a vertical direction. A reception weight combining section generates a combined signal for each antenna element group by multiplying a signal received by each antenna element of the group with a weight and combining the weighted signals of the antenna element group. A selection section measures reception power of the combined signal for each antenna element group and selects an antenna element group based on the measured reception powers. A transmission weight combining section multiplies a transmit signal with a weight applied by the reception weight combining section to a signal received by an antenna element of the selected antenna element group, and a diversity transmission section transmits the transmit signal from the selected antenna element group.
Abstract:
A base station apparatus and communication terminal apparatus capable of estimating interference with other cells on an uplink and realizing optimum assignment. At a base station (100), a scheduling and transmission parameter determining section (113) receives soft handover information from a higher layer and does not perform individual assignment processing for a mobile station in the process of soft handover. In this way, the mobile station can perform continuous transmission at a constant transmission rate (e.g., coding rate, modulation scheme, spreading factor, transmit power, etc.).
Abstract:
Transmission diversity and adaptive array antenna transmission is executed with respect to a user to which a shared channel is assigned, or a pilot channel is shared a like a shared channel. By this means it is made possible to secure a large number of users without code resource shortages even where adaptive array antenna is applied to a shared channel.
Abstract:
An envelope calculation section (113) calculates the amplitude of a transmission signal after the multiplexing thereof. When the calculated amplitude is beyond a permissible amplitude value, a correction coefficient calculation section (114) calculates a correction coefficient that is the difference between amplitude values before and after a correction. Multiplication sections (115) and (116) calculate a correction value by multiplying a filter coefficient by a correction coefficient. Subtraction sections (119) and (120) subtract the correction value from the transmission signal after a filtering operation. Thereby, the transmission amplitude at the time of a peak can be suppressed without increasing the number of filter operation circuits.
Abstract:
Spreading sections of the base station spread the respective distributed data using mutually orthogonal spreading codes and are transmitted from antennas. Despreading sections of the mobile station despread the received signals using the same spreading codes as those used at the base station. Demodulation sections demodulate the despread signals. Received signal power measuring sections measure their received signal powers from the demodulation result. A received signal power combination section combines the measured received signal powers and a transmit power control section controls transmission power based on the combined received signal power. When carrying out diversity reception through a plurality of antennas at the base station, transmit power control errors are suppressed to a small level at the mobile station.
Abstract:
Spreading sections 104 and 105 of the base station spread the respective distributed data using mutually orthogonal spreading codes and they are transmitted from antennas 106 and 107. Despreading sections 202 and 203 of the mobile station despread the received signals using the same spreading codes as those used at the base station, demodulation sections 204 and 205 demodulate the despread signals, received signal power measuring sections 207 and 208 measure their received signal powers from the demodulation result, received signal power measuring section 209 combines the measured received signal powers and transmit power control section 212 controls transmission power based on the combined received signal power. When carrying out diversity reception through a plurality of antennas at the base station, this suppresses transmit power control errors to a small level at the mobile station.
Abstract:
The communication terminal apparatus measures reception quality and reports the measurement result to the base station apparatus, and the base station apparatus switches the transmission rate based on the reported result of the reception quality. In this way, the transmission rate is switched starting at the point in time at which the reception quality of the communication terminal apparatus deteriorates. Furthermore, the transmission rate is switched so that the amount of interference with others is within the allowable range according to the channel condition between the communication terminal apparatus and base station apparatus.
Abstract:
Transmitting/receiving apparatuses are installed in a base station and a mobile station, respectively, to perform mutual transmission and reception by using a plurality of spreading codes. The transmitting/receiving apparatus installed in the base station has a block for designating to the mobile station the kind and the number of spreading codes used in a reverse link from the mobile station to the base station through a forward link at the time that communication with the mobile station is started. The transmitting/receiving apparatus installed in the mobile station has a block for transmitting a signal to the base station by using spreading codes of the designated kind and number. The transmitting/receiving apparatus installed in the base station further has a block for detecting receiving quality values of the signal transmitted from the mobile station with respect to individual spreading codes used in the mobile station, a block for deciding whether or not the detected receiving quality values exceed a prescribed quality value, and a block for finally setting the kind and number of spreading codes to be used in the reverse link on the basis of the spreading codes for which the detected receiving quality values are determined to exceed the prescribed quality value.