摘要:
A solid-state image pickup device comprises for each pixel a photoelectric converter PD, an input terminal FD of a signal amplifier and a transfer switch TX for transferring an optical signal from the photoelectric converter to the input terminal. The device additionally comprises means for resetting the photoelectric converter by opening the transfer switch TX under a condition of holding the voltage of the input terminal FD to a fixed high level before storing the optical signal in the photoelectric converter PD. With this arrangement, any residual electric charge in the photoelectric converter can be eliminated without paying the cost of reducing the manufacturing yield and degrading the chip performance.
摘要:
A pixel space is narrowed without increasing PN junction capacitance. A photoelectric conversion device includes a plurality of pixels arranged therein, each including a first impurity region of a first conductivity type forming a photoelectric conversion region, a second impurity region of a second conductivity type forming a signal acquisition region arranged in the first impurity region, a third impurity region of the first conductivity type and a fourth impurity region of the first conductivity type are arranged in a periphery of each pixel for isolating the each pixel, the fourth impurity region is disposed between adjacent pixels, and an impurity concentration of the fourth impurity region is smaller than an impurity concentration of the third impurity region.
摘要:
A driving method of a solid-state imaging apparatus including multiple reference level supplying units each arranged correspondingly to a predetermined number of signal holding units, to supply a reference level to an output node of the signal holding unit through the selecting unit, wherein the method includes steps of: performing a clamping operation for sampling and holding the signal in the signal holding unit, by terminating turn ON pulses to be supplied to the selecting units successively in separate timings, one for each one of the selecting units, or one for each group of the selecting units while the reference level is supplied from the reference level supplying unit to the output node; and performing an operation of selecting the signal holding units through the selecting units, by supplying the turn ON pulses successively to the selecting units, to read out the signals successively from the signal holding units selected.
摘要:
The invention provides a photoelectric conversion device, in which a decrease in sensitivity and a crosstalk between wirings are suppressed. Plural pixel columns are arranged in one direction, plural pixels are arranged in a different direction to the one direction in a column manner in the pixel column, and the pixel includes a photodiode PD, a reset transistor M4 for resetting the photodiode PD, and a source follower input transistor M3 for receiving a signal from the photodiode PD. An independent readout wiring 16 is individually provided for each pixel. The reset transistor M4 and the source follower input transistor M3 included in one pixel column or another pixel column are arranged between the photodiode column in one pixel column and the photodiode column in another pixel column arranged adjacent to the one pixel column.
摘要:
This invention provides an image pickup device comprising a plurality of pixels each including a photoelectric conversion unit, a semiconductor area to which a signal from the photoelectric conversion unit is transferred, a transfer switch for transferring the signal from the photoelectric conversion unit to the semiconductor area, and a read unit for reading out the signal from the semiconductor area, and a drive circuit for outputting a first level at which the transfer switch is set in an OFF state, a second level at which the transfer switch is set in an ON state, and a third level between the first level and the second level, wherein the drive circuit controls to hold the third level for a predetermined time while the transfer switch is changing from the ON state to the OFF state.
摘要:
The invention is to suppress a loss in image quality resulting from a sensitivity difference among different colors and to suppress an increase in a chip area. The invention provides for example an image sensor including three light detecting element rows respectively having R, G and B color filters on light detecting apertures, in which the light detecting element in the G light detecting element row has a light detecting area larger than that of the light detecting element in other B and R light detecting element rows and centers of gravity of light detecting parts of the light detecting elements in the respective light detecting element rows are arranged with a constant pitch (pitch Q) among the light detecting element rows and in which the G light detecting element row with a larger light detecting area in the light detecting element is not positioned as an end row among the R, G and B light detecting element rows but as a central light detecting element row.
摘要:
To prevent such a situation that a signal from a pixel in a dark state is output at a level shifted from an originally set level to deteriorate an image quality, and to improve the image quality. A photoelectric conversion apparatus according to the present invention includes: a plurality of photoelectric conversion elements; a plurality of amplifying units for amplifying a signal in accordance with a photo-carrier generated in the photoelectric conversion elements; a plurality of signal holding units for holding output signals from the amplifying units through a plurality of switch units; and a control signal supplying unit for supplying a control signal to the switch units through a control line, in which the control line is sequentially connected to the plurality of switch units and has both ends connected to the control signal supplying units, or a change rate with time of an amplitude of a signal held by the signal holding units is set lower than a change rate with time of am amplitude of the control signal at the time of turning off the switch units.
摘要:
The invention is to suppress a loss in image quality resulting from a sensitivity difference among different colors and to suppress an increase in a chip area. The invention provides for example an image sensor including three light detecting element rows respectively having R, G and B color filters on light detecting apertures, in which the light detecting element in the G light detecting element row has a light detecting area larger than that of the light detecting element in other B and R light detecting element rows and centers of gravity of light detecting parts of the light detecting elements in the respective light detecting element rows are arranged with a constant pitch (pitch Q) among the light detecting element rows and in which the G light detecting element row with a larger light detecting area in the light detecting element is not positioned as an end row among the R, G and B light detecting element rows but as a central light detecting element row.
摘要:
In order to prevent an image quality from being lowered by shading and or the like, an image pickup apparatus is provided which includes an image pickup area including a plurality of photoelectric conversion areas, a plurality of converging lenses for converging light on a plurality of photoelectric conversion areas, and a light shielding area having a plurality of opening areas through which light is incident upon the plurality of photoelectric conversion areas, wherein positions of the converging lens and opening area are shifted inward than a corresponding photoelectric conversion area.
摘要:
In order to solve the problem in which voltages Vsig1 read in units of rows have differences to cause vertical shading, thereby degrading image quality, and the problem in which the dynamic ranges of source follower circuits are different in units of rows because finite resistances are distributed in the power supply lines, a photoelectric conversion apparatus includes photoelectric conversion portions placed in a plurality of rows, an amplification section including a load section arranged in units of vertical output lines to amplify signal charges accumulated in the photoelectric conversion portions placed in a plurality of rows, a vertical scanning section for sequentially scanning signals amplified by the amplification section to read the signals onto the vertical output lines, and a horizontal scanning section for sequentially scanning the signals amplified by the amplification section to read the signals onto horizontal output lines, wherein the load sections are located on a side vertically opposite to the direction of signal output from the amplification section.