Abstract:
A block linear equalizer (BLE) using an approximate Cholesky decomposition is disclosed. The BLE includes channel estimators, a channel monitor unit, a noise power estimator, a parameter selection unit and an approximate Cholesky processor. The channel estimator generates a channel estimate vector from received samples. The channel monitor unit generates a first channel monitor signal for a truncated channel estimate vector and a second channel monitor signal. The noise power estimator estimates a noise power of the received samples. The parameter selection unit selects parameters for approximate Cholesky decomposition based on the first and second channel monitor signals. The approximate Cholesky processor performs block linear equalization on the received samples based on approximate Cholesky decomposition.
Abstract:
Methods for generating a three-dimensional visualization image of an object, such as an internal organ, using volume visualization techniques are provided. The techniques include a multi-scan imaging method; a multi-resolution imaging method; and a method for generating a skeleton of a complex three dimension object. The applications include virtual cystoscopy, virtual laryngoscopy, virtual angiography, among others.
Abstract:
A Wireless bridge conjoins two previously incompatible technologies within a single device to leverage the strengths of each. The Wireless bridge marries the Personal Area Network (PAN) technology of Bluetooth as described in Bluetooth Specification Version 1.0B with the Wireless Local Area Network (WLAN) technology described in the IEEE802.11a specification to provide a wireless system level solution for peripheral devices to provide Internet service interactions. The invention brings together in a single working device implementations of these technologies so they do not interfere or disrupt the operation of each other and instead provide a seamless transition of a Bluetooth connection to Wireless Local Area Network/Internet connection. From the Wireless Local Area Network perspective the inventive wireless bridge extension allows a Bluetooth-enabled device to roam from one Wireless Access Point (bridge) to the next without losing its back end connection. The invention takes into account the minimum separation and shielding required of these potentially conflicting technologies to inter-operate.
Abstract:
The present invention has many aspects. One aspect of the invention is to perform equalization using a sliding window approach. A second aspect reuses information derived for each window for use by a subsequent window. A third aspect utilizes a discrete Fourier transform based approach for the equalization. A fourth aspect relates to handling oversampling of the received signals and channel responses. A fifth aspect relates to handling multiple reception antennas. A sixth embodiment relates to handling both oversampling and multiple reception antennas.
Abstract:
A receiver which suppresses inter-cluster multipath interference by processing an impulse channel response consisting of two multipath clusters, each cluster having groups of signals with multiple delays. In one embodiment, the receiver includes a single antenna and parallel-connected delay units used to align the groups of signals before being input into respective sliding window equalizers. The outputs of the equalizers are combined at chip level via a combiner which provides a single output. In another embodiment, a Cluster Multipath Interference Suppression (CMIS) circuit is incorporated into the receiver. The CMIS circuit includes a hard decision unit and a plurality of signal regeneration units to generate replicas of the multipath clusters. The replicas are subtracted from the respective outputs of the delay units and the results are input to the respective sliding window equalizers. In another embodiment, multiple antennas are used to receive and process the clusters.
Abstract:
A receiver which suppresses inter-cluster multipath interference by processing an impulse channel response consisting of two multipath clusters, each cluster having groups of signals with multiple delays. In one embodiment, the receiver includes a single antenna and parallel-connected delay units used to align the groups of signals before being input into respective sliding window equalizers. The outputs of the equalizers are combined at chip level via a combiner which provides a single output. In another embodiment, a Cluster Multipath Interference Suppression (CMIS) circuit is incorporated into the receiver. The CMIS circuit includes a hard decision unit and a plurality of signal regeneration units to generate replicas of the multipath clusters. The replicas are subtracted from the respective outputs of the delay units and the results are input to the respective sliding window equalizers. In another embodiment, multiple antennas are used to receive and process the clusters.
Abstract:
An improved system and method for estimating one or more parameters, such as amplitude and signal-to-noise ratio, of a received signal, such as an M-QAM or q-ASK signal, is set forth herein. A first embodiment of the invention estimates the amplitude of an M-QAM signal based upon known or ascertainable phase information regarding a plurality of transmitted symbols. A respective set of received symbols corresponding to the plurality of transmitted symbols is recovered. Each of the plurality of received symbols is multiplied by a complex unit vector with a phase that is opposite in sign to the complex transmitted data symbol to generate a set of products. The set of products is summed, and the real part of the sum of products is then determined. The absolute values of the known transmitted symbols are summed to generate a total magnitude value. The real part of the sum of products is divided by the sum of transmitted magnitude values to generate an estimate of the amplitude of the M-QAM signal. Other embodiments of the present invention utilize second-order and fourth-order moments of received samples, a maximum likelihood searching process, or a Kurtosis estimation process to estimate amplitude, noise power, and signal-to-noise ratio of a received signal.
Abstract:
A sliding window based data estimation is performed. An error is introduced in the data estimation due to the communication model modeling the relationship between the transmitted and received signals. To compensate for an error in the estimated data, the data that was estimated in a previous sliding window step or terms that would otherwise be truncated as noise are used. These techniques allow for the data to be truncated prior to further processing reducing the data of the window.
Abstract:
A method and block detection receiver for detecting codes carried in a received signal processed into blocks of values. The method includes the steps of arranging the blocks into non-overlapping sets of at least two blocks per set; and for each set, executing a code detection operation over combinations of values, each combination containing one value from each block in the set. A single- or dual-maxima metric generator may be used. Preferably, the number of combinations of values is restricted and the values in a combination are weighted. The block detection receiver executes a form of sequence estimator. Accordingly, performance of the receiver is close to that of coherent detection and is much better than that of the conventional receivers which do not consider more than one consecutive block.
Abstract:
A system is provided for automatically generating and displaying market analysis related to financial assets whereby the analysis is provided for substantially all financial assets. The system includes a computer, database accessible by the computer and having stored thereon historical and real time data relating to a financial asset, and software executing on the computer for generating and displaying market analysis. The market analysis may, but not necessarily, include historical and real time data, a measure of liquidity and volatility of a financial asset, a measure of a financial asset's historical performance, an analysis of a financial asset's return in relation to its risk, and computed correlation coefficients and analysis of relationships between a financial asset and its market or market sectors.