Abstract:
Method of resource selection where a selection window with a total number of resources is set. The method includes setting a sensing window and monitoring slots by decoding a physical sidelink control channel (PSCCH) and measuring a reference signal received power (RSRP), setting a threshold, excluding any restricted resources from the total number of resources, excluding any occupied resources from the total number of resources, and determining if an initial number of remaining resources is greater than or equal to an initial percentage of the total number of resources.
Abstract:
A method of enabling communication between a user equipment (UE) and a non-terrestrial network (NTN), is described. The UE may be able to calculate a timing advance compensation. The timing advance compensation may be a differential or full timing advance compensation. An offset value, Koffset, may be indicated to the UE. The Koffset value may be used for timing relationships.
Abstract:
A system and method for providing early indication by a reduced capability New Radio (NR) User Equipment (UE). In some embodiments the reduced capability UE informs the network, by its use of a combination of preamble, Random Access Channel Occasion (RO), and initial bandwidth part (BWP), that it is a reduced capability UE. In some embodiments, the reduced capability UE transmits payload data in a Message A message. In some embodiments, the reduced capability UE receives, from the network, a set of candidate uplink resources, and transmits a Message 3 message within a subset of the set of candidate uplink resources.
Abstract:
A method and apparatus are provided. The method includes receiving a desired signal from a serving base station, receiving a plurality of interfering signals from one or more base stations, estimating a maximum likelihood (ML) decision metric of interfering signals, applying a logarithm function to the ML decision metric, and applying a maximum-log approximation function to a serving data vector and an interference data vector, which are included in the ML decision metric, determining the values of a transmit power, a rank, a precoding matrix, a modulation order and a transmission scheme using the applied ML decision metric, and cancelling the interfering signals from the received signals using the determined values of transmit power, rank, precoding matrix, modulation order and transmission scheme.
Abstract:
A computing system includes: an inter-device interface configured to communicate receiver signal corresponding to serving signal contemporaneous with interference signal from an interference source at an interference-aware receiver; a communication unit, coupled to the inter-device interface, configured to: determine a serving-interference metric for describing capability of the interference-aware receiver associated with serving communication capacity and interference communication capacity, and generating feedback signal including the serving-interference metric for communicating the feedback signal to a node device.An embodiment includes: an inter-device interface configured to communicate feedback signal including a serving-interference metric for representing an interference-aware receiver processing receiver signal corresponding to serving signal contemporaneous with interference signal; a communication unit, coupled to the inter-device interface, configured to: generate a communication rate profile based on the serving-interference metric for describing the interference-aware receiver, and determine serving detail based on the communication rate profile for communicating serving content to the interference-aware receiver.
Abstract:
A computing system includes: an inter-device interface configured to receive receiver signal for communicating serving content through a communication channel; a communication unit, coupled to the inter-device interface, configured to: calculate a weighting set corresponding to a modular estimation mechanism, and generate a channel estimate based on the weighting set for characterizing the communication channel for recovering the serving content.
Abstract:
A wireless communication system includes: a communication interface configured to receive a desired input signal and an interference input signal; and a control module, coupled to the communication interface, configured to calculate a capacity region to maximize a first R1 reference for the desired input signal by removing the interference input signal.
Abstract:
A computing system includes: an inter-device interface configured to determine receiver description for representing a receiver signal corresponding to serving signal contemporaneous with an interference signal from an interference source at an interference-aware receiver; a communication unit, coupled to the inter-device interface, configured to: generate a pre-coding candidate set based on the receiver description for adjusting the serving signal or a subsequent instance thereof, determine a sum-rate condition for representing the serving signal along with the interference signal, and generate a pre-coding adjustment maximizing the sum-rate condition from the pre-coding candidate set for communicating the serving signal or a subsequent instance thereof.
Abstract:
A computing system includes: a communication unit configured to: identify an overall communication content or a portion therein for blind-joint transmission with a second device for utilizing the second device and a third device to send the overall communication content to a first device, generate a first encoded set corresponding to the overall communication content or the portion therein for communicating the overall communication content along with a second encoded set for the third device, determine a first pre-coding mechanism associated with the first encoded set for communicating the overall communication content with overload transmission mode including a second pre-coding mechanism for the third device; and an inter-device interface, coupled to the communication unit, configured to communicate a first transmitter signal based on the first encoded set and the first pre-coding mechanism for communicating the first transmitter signal concurrently with a second transmitter signal from the third device.
Abstract:
A system and a method are disclosed for performing a UE-initiated beam-management procedure, the method includes receiving, by a user equipment (UE), configuration information including reporting data, for the UE to report information about a quality of a current beam and/or a quality of a new beam, and triggering-event data, for the UE to determine that a condition is satisfied for performing a UE-initiated (UEI) beam-management (BM) procedure, and based on determining, by the UE, that the condition is satisfied, sending a beam report including information regarding the quality of the current beam and/or the quality of the new beam.