Abstract:
A method of controlling laser output in a heat assisted magnetic recording device can be performed by control circuitry in a data storage device. The method includes measuring a temperature, measuring laser output power of a laser, determining a power error by subtracting an optimal laser output power from the measured laser output power and comparing the power error to at least one threshold to determine whether an applied current to the laser needs to be adjusted. The at least one threshold is related to how great the power error can be while maintaining the integrity of data on a recording medium.
Abstract:
Certain exemplary aspects of the present disclosure are directed towards methods and apparatuses in which logic circuitry generates an error detection code based on user data received from a host, and further generates a first set of check bits, to be written to the non-volatile memory circuit in conjunction with the user data, by combining the error detection code with a hashed data address of the user data. In some embodiments, the check bits associated with the user data providing verification that the user data was written in the appropriate physical block address of the non-volatile memory circuit.
Abstract:
A data storage device may employ a heat assisted magnetic recording data writer separated from a plurality of data bits stored on a media surface of a data storage medium. At least one controller and a prediction circuit that is connected to the heat assisted magnetic recording data writer can be configured to remap the media surface in response to a predicted heat assisted magnetic recording data writer failure.
Abstract:
A data storage device may generally be constructed and operated with at least one variable resistance memory cell having a first logic state threshold that is replaced with a second logic state threshold by a controller. The first and second logic states respectively corresponding to a predicted resistance shift that is based upon an operating temperature profile.
Abstract:
An apparatus includes a write element configured to apply a magnetic field to write data on a portion of a heat-assisted magnetic recording media in response to an energizing current. An energy source is configured to heat the portion of the media being magnetized by the write element. A preheat energizing current is applied to the write element during an interval before writing the data to the portion of the media. The preheat energizing current does not cause data to be written to the media and brings at least one of the write element and driver circuitry into thermal equilibrium prior to writing the data on the portion.
Abstract:
A plurality of addressable memory tiles each comprise one or more cross-point arrays. Each array comprises a plurality of non-volatile resistance-change memory cells. A controller is configured to couple to the array and to a host system. The controller is configured to perform receiving, from the host system, one or more data objects each having a size equal to a predetermined logical block size, and storing the one or more data objects in a corresponding integer number of one or more of the memory tiles.
Abstract:
Data is written to cells of a resistance-based, non-volatile memory. An activity metric is tracked since the writing of the data to the cells. In response to the activity metric satisfying a threshold, a bias signal is applied to the cells to reverse a resistance shift of the cells.
Abstract:
An apparatus includes a write element configured to apply a magnetic field to write data on a portion of a heat-assisted magnetic recording media in response to an energizing current. An energy source is configured to heat the portion of the media being magnetized by the write element. A preheat energizing current is applied to the write element during an interval before writing the data to the portion of the media. The preheat energizing current does not cause data to be written to the media and brings at least one of the write element and driver circuitry into thermal equilibrium prior to writing the data on the portion.
Abstract:
A data storage system for use in a high radiation environment runs first and second operating time counters to monitor a field-programmable, gate array (FPGA) configured as a storage controller. Based on the first operating time counter passing a first threshold, the FPGA is fully reprogrammed. Based on the second operating time counter passing a second threshold less than the first threshold, the FPGA is partially reprogrammed.
Abstract:
A failure of a head is detected, the head reading from and writing to an affected surface of a disk of a disk drive. The failure prevents the head from writing to the affected surface but does not prevent the head from reading from the affected surface. In response to detecting the failure, a remediation is performed. The remediation involves determining spare capacity blocks on other surfaces of the disk drive different than the affected surface, and copying data from the affected surface to the spare capacity blocks via an internal copy function within the disk drive. The spare capacity blocks in place of the affected surface for data storage and retrieval subsequent to the failure.