摘要:
A detection framework that matches anatomical structures using appearance and shape is disclosed. A training set of images are used in which object shapes or structures are annotated in the images. A second training set of images represents negative examples for such shapes and structures, i.e., images containing no such objects or structures. A classification algorithm trained on the training sets is used to detect a structure at its location. The structure is matched to a counterpart in the training set that can provide details about the structure's shape and appearance.
摘要:
The present invention is directed to a method for populating a database with a set of images of an anatomical structure. The database is used to perform appearance matching in image pairs of the anatomical structure. A set of image pairs of anatomical structures is received, where each image pair is annotated with a plurality of location-sensitive regions that identify a particular aspect of the anatomical structure. Weak learners are iteratively selected and an image patch is identified. A boosting process is used to identify a strong classifier based on responses to the weak learners applied to the identified image patch for each image pair. The responses comprise a feature response and a location response associated with the image patch. Positive and negative image pairs are generated. The positive and negative image pairs are used to learn a similarity function. The learned similarity function and iteratively selected weak learners are stored in the database.
摘要:
A method for performing image based regression using boosting to infer an entity that is associated with an image of an object is disclosed. A regression function for a plurality of images is learned in which for each image the associated entity is known. The learned regression function is used to predict an entity associated with an image in which the entity is not known.
摘要:
A system and method for tracking an object is disclosed. A video sequence including a plurality of image frames are received. A sample based representation of object appearance distribution is maintained. An object is divided into one or more components. For each component, its location and uncertainty with respect to the sample based representation are estimated. Variable-Bandwidth Density Based Fusion (VBDF) is applied to each component to determine a most dominant motion. The motion estimate is used to determine the track of the object.
摘要:
A method and system for patient-specific planning of cardiac therapy, such as cardiac resynchronization therapy (CRT), based on preoperative clinical data and medical images, such as ECG data, magnetic resonance imaging (MRI) data, and ultrasound data, is disclosed. A patient-specific anatomical model of the left and right ventricles is generated from medical image data of a patient. A patient-specific computational heart model, which comprises cardiac electrophysiology, biomechanics and hemodynamics, is generated based on the patient-specific anatomical model of the left and right ventricles and clinical data. Simulations of cardiac therapies, such as CRT at one or more anatomical locations are performed using the patient-specific computational heart model. Changes in clinical cardiac parameters are then computed from the patient-specific model, constituting predictors of therapy outcome useful for therapy planning and optimization.
摘要:
Computerized characterization of cardiac wall motion is provided. Quantities for cardiac wall motion are determined from a four-dimensional (i.e., 3D+time) sequence of ultrasound data. A processor automatically processes the volume data to locate the cardiac wall through the sequence and calculate the quantity from the cardiac wall position or motion. Various machine learning is used for locating and tracking the cardiac wall, such as using a motion prior learned from training data for initially locating the cardiac wall and the motion prior, speckle tracking, boundary detection, and mass conservation cues for tracking with another machine learned classifier. Where the sequence extends over multiple cycles, the cycles are automatically divided for independent tracking of the cardiac wall. The cardiac wall from one cycle may be used to propagate to another cycle for initializing the tracking. Independent tracking in each cycle may reduce or avoid inaccuracies due to drift.
摘要:
A method and system for patient-specific cardiac electrophysiology is disclosed. Particularly, a patient-specific anatomical model of a heart is generated from medical image data of a patient, a level-set representation of the patient-specific anatomical model is generated of the heart on a Cartesian grid; and a transmembrane action potential at each node of the level-set representation of the of the patient-specific anatomical model of the heart is computed on a Cartesian grid.
摘要:
A method and system for generating a patient specific anatomical heart model is disclosed. Volumetric image data, such as computed tomography (CT) or echocardiography image data, of a patient's cardiac region is received. Individual models for multiple heart components, such as the left ventricle (LV) endocardium, LV epicardium, right ventricle (RV), left atrium (LA), right atrium (RA), mitral valve, aortic valve, aorta, and pulmonary trunk, are estimated in said volumetric cardiac image data. A patient specific anatomical heart model is generated by integrating the individual models for each of the heart components.
摘要:
A method and system for automated intervention planning for transcatheter aortic valve implantations using computed tomography (CT) data is disclosed. A patient-specific aortic valve model is detected in a CT volume of a patient. The patient-specific aortic valve model is detected by detecting a global location of the patient-specific aortic valve model in the CT volume, detecting aortic valve landmarks based on the detected global location, and fitting an aortic root surface model. Angulation parameters of a C-arm imaging device for acquiring intra-operative fluoroscopic images and anatomical measurements of the aortic valve are automatically determined based on the patient-specific aortic valve model.
摘要:
Heart valve operation is assessed with patient-specific medical diagnostic imaging data. To deal with the complex motion of the passive valve tissue, a hierarchal model is used. Rigid global motion of the overall valve, non-rigid local motion of landmarks of the valve, and surface motion of the valve are modeled sequentially. For the non-rigid local motion, a spectral trajectory approach is used in the model to determine location and motion of the landmarks more efficiently than detection and tracking. Given efficiencies in processing, more than one valve may be modeled at a same time. A graphic overlay representing the valve in four dimensions and/or quantities may be provided during an imaging session. One or more of these features may be used in combination or independently.