摘要:
A method and system for estimating color separation misregistration of a printing system. The method may include marking a substrate to form a misregistration estimation patch. The misregistration estimation patch being formed by first and second color separations. The first color separation marking the substrate with a first halftone pattern. The first halftone pattern has a first halftone-frequency vector in a first direction and a second halftone-frequency vector in a second direction. The second color separation marking the substrate with a second halftone pattern. The second halftone pattern has a first halftone-frequency vector in a first direction and a second halftone-frequency vector in a second direction. The first and second halftone patterns form a moiré pattern. A deviation in at least one the halftone frequency vectors and/or the moiré pattern can be indicative of a color separation misregistration. The method also includes estimating the color separation misregistration of the printing system using the misregistration estimation patch.
摘要:
Disclosed herein is a method and apparatus for moiré-free enhanced color halftone printing of color image separations for an arbitrary number of colorants. The method and apparatus utilizes a plurality of halftone screens, >4, to produce outputs that are moiré free and form hexagonal periodic rosettes. The relatively large number of screens can be used for enhanced printing applications, such as printing with high-fidelity colorants, light colorants, or special colorants, such as white, metallics and fluorescents. The method and apparatus provide for defining rosette fundamental frequency vectors VR1, VR2 that satisfy a length and sum requirement to meet visual acceptability standards according to |VR1|>fmin, |VR2|>fmin, and |VR1±VR2|>fmin; defining N halftone screens for colorants i=1, N, respectively possessing first and second frequency vectors (Vi1, Vi2), where no two screens possess identical fundamental frequency vector pairs; and selecting fundamental frequency vectors for the N halftone screens according to (Vi1, Vi2)=(mi1VR1+mi2VR2, ni1VR1+ni2VR2) for integer m's and n's, where at least one fundamental frequency vector or its conjugate must also satisfy one of the following: Vik=VR1, Vik=VR2, and |Vik>2 max [|VR1|, |VR2|].
摘要翻译:本文公开了一种用于任意数量的着色剂的彩色图像分离的无莫尔增强彩色半色调印刷的方法和装置。 该方法和装置利用多个半色调筛网,以产生无摩擦和形成六边形周期性玫瑰花结的输出。 相对大量的屏幕可以用于增强的打印应用,例如用高保真着色剂,浅色剂或特殊着色剂如白色,金属和荧光物质的印刷。 该方法和装置提供用于定义满足根据| V R1的视觉可接受性标准的长度和和要求的玫瑰花基波矢量V R1,V R2 SUB>,>< />,< /< V 2 R 2 min分钟 定义分别具有第一和第二频率矢量(V i1,...,V i2)的着色剂i = 1,N的N个半色调屏幕,其中没有两个屏幕具有相同的基频矢量 对 以及根据(V i i1,V 2 i 2)=(m i i R i R 1)选择N个半色调屏幕的基本频率矢量, / SUB> + m< i> i2< 2> R2< i< i< i< 对于整数m和n,其中至少一个基频矢量或其共轭也必须满足以下之一:V ij = V R 1 V i,R i,R i,R i,R i, |,| V 2 R 2 |]。
摘要:
A method for reduction of differential gloss as found in halftone image hardcopy prints. The method comprises selecting either a single halftone or employing two halftones: a first halftone having a high apparent gloss characteristic; and a second halftone having a low apparent gloss characteristic. A determination is then made of which areas of the halftone image correspond to potentially high gloss and low gloss regions under normal printing conditions. An overlay of clear toner is applied to the hardcopy print of the halftone image. In one approach a single halftone is employed to control the physical area coverage of the applied clear toner layer so as to adjust the local gloss across for the determined regions and thereby balance the evenness of gloss across the entire hardcopy print of the halftone image. Greater physical area coverage is provided as controlled by the single halftone in low gloss regions, and corresponding less physical area coverage is provided in the low gloss regions. In a further approach two halftones are employed. The first halftone is directed to those portions of the overlaid clear toner determined as corresponding to potentially low gloss regions of the halftone image, and the second halftone is directed to those portions of the clear toner layer determined as overlaying potentially high gloss regions of the halftone image.
摘要:
Provided herein are teachings directed to the creation of moiré-based auto-stereoscopic watermarks in rendered images. By choosing different halftone structures, which differ by having different spatial frequencies for each of two delineated partitions in an image, it becomes possible to embed arbitrary binary patterns into printed documents as digital watermarks. The invisible watermarks become moiré auto-stereoscopic images when the prints are viewed through an overlaid transparency “decoder” suitably prepared by virtue of being rendered with a uniform halftone structure having the correct special frequency in relationship with the partition frequencies employed in the printed document.
摘要:
Disclosed herein is a Moire-free color halftone configuration for clustered dots. Unlike conventional methods, the disclosed method produces periodic hexagon rosettes of identical shapes. These exemplary hexagon rosettes have three fundamental spatial frequencies exactly equal to half of the fundamental frequency of the three halftone screens. The resultant halftone outputs are truly Moire free, as all the fundamentals and harmonic frequencies are multiples of and thus higher in frequency than the rosette fundamental frequency. The halftone outputs resulting from the employment of the exemplary rosette design methodology provided herein, are also robust to the typical misregistration among color separations commonly found in color systems.
摘要:
The present invention relates to creating differential gloss images in clear toner by the manipulation of halftones employed prior to the depositing of the clear toner layer upon a substrate. By selectively applying halftones with anisotropic structure characteristics which are significantly different in orientation although remaining identical in density, a differential gloss image may be superimposed within even clear toner as applied to paper. Further, this technique may be used to enhance color toner Glossmark images across the low and high density areas of application where the differential gloss effect would otherwise be weak.
摘要:
A method and system for designing a plurality of correlated stochastic screens or conjugate screen portions intended for use in color halftoning of a corresponding plurality of color separations. A merit function is associated with each screen or screen portion. The merit function represents a measure of the desirability of the screen, particularly with regard to maximizing ink dispersion and optimizing spatial frequency response. An additional merit function value is associated with a combination of the screens and screen portions. Additional merit function represents a measure of desirability of the screen combination with regard to ink dispersion and combined spatial frequency response. The merit functions are iteratively applied to possible screens until an optimized merit value is calculated. The screens are selected that correspond to the optimized merit value. The image is generated using the selected screens in a conventional color halftoning process with a plurality of color separations.
摘要:
A method and system is disclosed for characterizing a color scanner comprising generating a halftone-independent target of color patches, printing the target on a color hardcopy device, measuring the target to obtain device-independent color values, scanning the target to obtain scanner color values, and building a scanner profile that relates scanned color values to device-independent color values.
摘要:
Provided are methods, apparatus and systems related to watermark decoding via spectral analysis of an image. According to one exemplary method, spectral analysis is performed to decode a watermark within an image, where the pixel spacing associated with the image was modulated to encode the watermark.
摘要:
A model-based halftone independent method for characterizing a printer equipped with a plural of halftone screens comprises: printing a target set of basic patches comprised of a fundamental binary pattern independent of a halftone screen; measuring true color printer response from the target set; modeling a halftone independent characterization of the printer with the mathematical transformation using the measured response; modeling a first halftone dependent characterization of the printer with the mathematical transformer to generate a first predicted result using a selected halftone screen; comparing a measured response of the printer using the halftone screen with the predicted result to define a correction factor corresponding to the halftone screen; and modeling a halftone dependent characterization of the printer using a predicted response of the fundamental binary pattern and the correction factor.