Abstract:
A test and measurement system including a test and measurement instrument, a probe connected to the test and measurement instrument, a device under test connected to the probe, at least one memory configured to store parameters for characterizing the probe, a user interface and a processor. The user interface is configured to receive a nominal source impedance of the device under test. The processor is configured to receive the parameters for characterizing the probe from the memory and the nominal source impedance of the device under test from the user interface and to calculate an equalization filter using the parameters for characterizing the probe and nominal source impedance from the user interface.
Abstract:
Embodiments of the present invention provide techniques and methods for improving signal-to-noise ratio (SNR) when averaging two or more data signals by finding a group delay between the signals and using it to calculate an averaged result. In one embodiment, a direct average of the signals is computed and phases are found for the direct average and each of the data signals. Phase differences are found between each signal and the direct average. The phase differences are then used to compensate the signals. Averaging the compensated signals provides a more accurate result than conventional averaging techniques. The disclosed techniques can be used for improving instrument accuracy while minimizing effects such as higher-frequency attenuation. For example, in one embodiment, the disclosed techniques may enable a real-time oscilloscope to take more accurate S parameter measurements.
Abstract:
A test and measurement instrument, including a splitter configured to split an input signal into two split input signals and output each split input signal onto a separate path and a combiner configured to receive and combine an output of each path to reconstruct the input signal. Each path includes an amplifier configured to receive the split input signal and to compress the split input signal with a sigmoid function, a digitizer configured to digitize an output of the amplifier; and at least one processor configured to apply an inverse sigmoid function on the output of the digitizer.
Abstract:
A method for determining scattering parameters of a device under test using a real-time oscilloscope. The method includes calculating a reflection coefficient of each port of a device under test with N ports, wherein N is greater than one, based on a first voltage measured by the real-time oscilloscope when a signal is generated from a signal generator. The method also includes determining an insertion loss coefficient of each port of the device under test, including calculating the insertion loss coefficient of the port of the device under test to be measured based on a second voltage measured by the real-time oscilloscope when a signal is generated from a signal generator.
Abstract:
A test and measurement system including a device under test, two de-embed probes connected to the device under test, and a test and measurement instrument connected to the two de-embed probes. The test and measurement instrument includes a processor configured to determine the S-parameter set of the device under test based on measurements from the device under test taken by the two de-embed probes.