Abstract:
A silver paste ink composition comprises a plurality of first particles comprising silver; a polymer binder; a carrier solvent; and a plurality of second particles comprising silver. The second particles are nanoparticles that are different than the first silver particles, the amount of second particles in the ink composition being sufficient to impart a first color to the uncured ink composition, the first color being different than the color of the same ink composition without the nanoparticles. The silver nanoparticles have a property of causing a change in the color of the ink composition when the ink composition is cured.
Abstract:
A method of forming a metal structure. The method comprises providing a dispersion of metal nanoparticles and a solution comprising a transient polymer and solvent. The dispersion of metal nanoparticles and the solution are formed by coaxially electrospinning into a fiber comprising the metal nanoparticles and the transient polymer. The fiber is heated to decompose the transient polymer and form a metallic structure.
Abstract:
A method for preparing latex emulsion compositions uses a steam-driven emulsification process, and a method for preparing a toner using the latex emulsion compositions. The method includes contacting a resin with an organic solvent and optionally a neutralization agent; and applying steam or heated water vapor to contact the resin to prepare a latex emulsion. An apparatus can perform the method.
Abstract:
A customizable print label used for various identification purposes and methods for making the same. In particular, the disclosed labels are printed with inks to provide specific images or markings, such as for example, letters and/or numbers, which can be removed or otherwise altered to customize the label to a user's preference.
Abstract:
A palladium precursor composition includes at least one palladium salt and at least one fluorinated component, wherein if the fluorinated component is not a fluorinated organoamine, the composition further includes an organoamine, and if the fluorinated component is a fluorinated organoamine, the composition may optionally further include one or more additional fluorinated components. Further disclosed is a substantially pinhole-free palladium layer formed from the precursor composition.
Abstract:
A dielectric layer for an electronic device, such as a thin-film transistor, is provided. The dielectric layer comprises a molecular glass. The resulting dielectric layer is very thin, pure, and stable. Processes and compositions for fabricating such a dielectric layer are also disclosed.