Abstract:
A system, apparatus, method and article to filter media signals are described. The apparatus may include a media processor. The media processor may include an image signal processor having multiple processing elements to determine a level of noise for an image using an internal spatial region of said image, select filter parameters based on the level of noise, and filter the image using the filter parameters. Other embodiments are described and claimed.
Abstract:
A method and system for compressing and decompressing video image data in real time employs thresholding and facsimile-based encoding to eliminate the need for computationally intensive two-dimensional transform-based compression techniques. The method operates first by forming a difference frame which contains only information pertaining to the difference between a current video image frame and a computed approximation of the video image frame. The difference frame is fed to a thresholder which categorizes each pixel in the frame as being either in a first set having intensities above or at a preset threshold, or a second set having intensities below a preset threshold. A facsimile-based compression algorithm is then employed to encode the first set of above or at threshold pixel locations. To compress the intensity data for each above or at threshold pixel, a quantizer and lossless encoder are preferably employed, with the quantizer serving to categorize the intensities by groups, and the lossless encoder using conventional coding, such as Huffman coding, to compress the intensity data further. Various techniques may be employed with the embodiments of the invention to adjust the actual amount of compressed data generated by the method and system to accommodate communication lines with different data rate capabilities.
Abstract:
Systems and methods of detecting an object using motion estimation may include a processor and motion estimation and object detection logic coupled to the processor. The motion estimation and object detection logic may be configured to include logic to detect an object in a frame of a video based on motion estimation. The video may include a first frame and a second frame. The motion estimation may be performed on a region of the second frame using sum of absolute difference between the region of the second frame and a corresponding region of the first frame.
Abstract:
An embodiment improves the operation of a H.264 and Joint Scalable Video Codec (e.g., JSVC/H.264 Amendment 3) video decoder by managing neighboring block data during the decoding process. An embodiment pre-computes neighboring block tables to efficiently locate the neighboring block data required to decode a current macroblock. In particular, the pre-computed most probable joint neighboring block tables disclosed herein handle both macroblock adaptive frame field (MBAFF) coding and non-MBAFF coding. An embodiment is further capable of managing variable block sizes. Other embodiments are described and claimed.
Abstract:
The format of telecined video may be determined including a bottom field first cadence. In addition, video using 2:3:3:2 top field first can be identified. Moreover, mixed cadence videos can also be detected. In some embodiments, mixed cadence videos may be detected by calculating variances of different areas within a frame.
Abstract:
A system, apparatus, method and article to perform buffering techniques are described. The apparatus may include a buffer having a fixed number of storage slots that store reconstructed picture representations received from an image processing module. Also, the apparatus may include a buffer status unit to store a multiple information items to indicate one or more buffer characteristics of the buffer. Further, the apparatus may include a buffer control module to manage storage within the buffer.
Abstract:
Implementations of a history-based temporal motion noise filtering technique that considers the temporal smooth among multiple pictures as well as the block-based technique to estimate the noise/motion history to better reflect the spatial/temporal smoothness in the local neighborhood are provided. In particular, implementations of the per-pixel blending technique in the block-based noise measurement may be used to better manipulate pixels in both the spatial and temporal domains. A global noise detection technique may be used to estimate the occurrence and/or strength of the noise. A content adaptive spatial filtering content adaptive spatial filter based on a local edge measurement may be used to reduce picture noise as well as preserve edge sharpness. Implementations may be configured for various applications. In particular, programmability options allow users to specify the filter parameters for singularity detection, spatial-only, temporal-only and spatial-temporal filters to achieve user desirable viewing experience.
Abstract:
A method can include selecting a block of pixels. It may be determined whether the block of pixels contains an edge pixel. If the block of pixels contains an edge pixel, a first pixel may be selected among the block of pixels. If it is determined that the first pixel is a ringing noise pixel, a ringing filter may be applied. An edge-preserved filter may be applied if the first pixel is not a ringing noise pixel.
Abstract:
A technique includes converting a first value for a pixel that is associated with a lower bit depth into a second value for the pixel, which is associated with a higher bit depth based at least in part on a neighborhood of the pixel.