摘要:
A system and method for electrophysiological monitoring system including a plurality of sensors configured to detect one or more health parameters of a patient and a monitoring device configured to receive a plurality of sensing signals from the sensors and output a monitoring signal representative of an alarm sequence, wherein the alarm sequence comprises a set of alarm events identified in the sensing signals. The system also includes an on-line monitoring module configured to generate a suffix tree data structure in response to the monitoring signal to identify alarm patterns from the set of alarm events and classify the alarm sequence in response to the occurrences of alarm patterns in the alarm sequence. The on-line monitoring module is further configured to alert monitoring personnel of an alarm condition after processing the alarm sequence in real-time.
摘要:
A method for managing alarm events in a physiological monitoring system is described. The method includes validating the accuracy of alarm events by checking if the alarm events are noise events. The method further includes identifying a pattern in alarm sequence or an alarm rate of at least one alarm type associated with the alarm events. The alarm rate is the frequency of the occurrence of alarm events for the particular alarm type. Based on the identified pattern in the alarm sequence and the alarm rate and patient data, an alarm level associated with the alarm type is adjusted. The hospital staff is notified depending on the criticality of the adjusted alarm level. Further, the alarm signals are suppressed when either a patient intervention or a pause signal is detected by the physiological monitoring system.
摘要:
Encoded HDR textures are described. In one aspect, a HDR image comprised is preprocessed such that HDR information is represented in a single color channel. The preprocessed image is quantized in view of two luminance ranges to retain HDR in the single color channel. Each block of quantized channel information is then encoded across two textures (encoded HDR textures). Specifically, when encoding a block of the quantized information, pixels in a first range of the two luminance ranges are put into a color channel associated with a first texture. Additionally, pixels in a second range of the two luminance ranges are stored into a color channel associated with a second texture.
摘要:
Texture montage is described. In one aspect, feature correspondences are received. The feature correspondences map at least one region on a 3-D mesh to at least one region on an image of one or more images. Each of the images provides texture information. An atlas of texture patches is created based on the feature correspondences. The atlas of texture patches provides for rendering texture from the images onto the 3-D mesh.
摘要:
Texture montage is described. In one aspect, feature correspondences are received. The feature correspondences map at least one region on a 3-D mesh to at least one region on an image of one or more images. Each of the images provides texture information. An atlas of texture patches is created based on the feature correspondences. The atlas of texture patches provides for rendering texture from the images onto the 3-D mesh.
摘要:
A “mesostructure renderer” uses pre-computed multi-dimensional “generalized displacement maps” (GDM) to provide real-time rendering of general non-height-field mesostructures on both open and closed surfaces of arbitrary geometry. In general, the GDM represents the distance to solid mesostructure along any ray cast from any point within a volumetric sample. Given the pre-computed GDM, the mesostructure renderer then computes mesostructure visibility jointly in object space and texture space, thereby enabling both control of texture distortion and efficient computation of texture coordinates and shadowing. Further, in one embodiment, the mesostructure renderer uses the GDM to render mesostructures with either local or global illumination as a per-pixel process using conventional computer graphics hardware to accelerate the real-time rendering of the mesostructures. Further acceleration of mesostructure rendering is achieved in another embodiment by automatically reducing the number of triangles in the rendering pipeline according to a user-specified threshold for acceptable texture distortion.
摘要:
The present invention provides a modeling method of a SPICE model series of a Silicon On Insulator (SOI) Field Effect Transistor (FET), where auxiliary devices are designed and fabricated, electrical property data is measured, intermediate data is obtained, model parameters are extracted based on the intermediate data, a SPICE model of an SOI FET of a floating structure is established, model parameters are extracted by using the intermediate data and data of the auxiliary devices, a macro model is complied, and a SPICE model of an SOI FET of a body leading-out structure is established. The modeling method provided in the present invention takes an influence of a parasitic transistor of a leading-out part in a body leading-out structure into consideration, and model series established by using the method can more accurately reflect actual operating conditions and electrical properties of the SOI FET of a body leading-out structure and the SOI FET of a floating structure, thereby improving fitting effects of the models.
摘要:
The present invention provides a method for determining BSIMSOI4 Direct Current (DC) model parameters, where a plurality of Metal Oxide Semiconductor Field Effect Transistor (MOSFET) devices of a body leading-out structure and of different sizes, and a plurality of MOSFET devices of a floating structure and of different sizes are provided; Id-Vg-Vp, Id/Ip-Vd-Vg, Ig-Vg-Vd, Ig-Vp, Ip-Vg-vd, Is/Id-Vp, and Id/Ip-Vp-Vd properties of all the MOSFET devices of a body leading-out structure, and Id-Vg-Vp, Id-Vd-Vg, and Ig-Vg-Vd properties of all the MOSFET devices of a floating structure are measured; electrical property curves without a self-heating effect of each MOSFET device of a body leading-out structure and each MOSFET device of a floating structure are obtained; and then DC parameters of a BSIMSOI4 model are successively extracted according to specific steps. In the present invention, proper test curves are successively selected according to model equations, and various kinds of parameters are successively determined, thereby accurately and effectively extracting the DC parameters of the BSIMSOI4 model.
摘要:
The present invention discloses a PD SOI device with a body contact structure. The active region of the PD SOI device includes: a body region; a gate region, which is inverted-L shaped, formed on the body region; a N-type source region and a N-type drain region, formed respectively at the two opposite sides of the anterior part the body region; a body contact region, formed at one side of the posterior part of the body region, which is side-by-side with the N-type source region; and a first silicide layer, formed on the body contact region and the N-type source region, which is contact to both of the body contact region and the N-type source region. The body contact region of the device is formed on the border of the source region and the leading-out terminal of the gate electrode. It can suppress floating body effect of the PD SOI device meanwhile not increasing the chip area, thereby overcoming the shortcoming in the prior art that the chip area is enlarged when the traditional body contact structure is employed. Furthermore, the fabrication process provided herein is simple and compatible to the CMOS technology.
摘要:
A SOI MOS device for eliminating floating body effects and self-heating effects are disclosed. The device includes a connective layer coupling the active gate channel to the Si substrate. The connective layer provides electrical and thermal passages during device operation, which could eliminate floating body effects and self-heating effects. An example of a MOS device having a SiGe connector between a Si active channel and a Si substrate is disclosed in detail and a manufacturing process is provided.