Abstract:
A method of providing channel state information feedback in a wireless communication system is provided. The method includes measuring original channel state information for each of a plurality of channels. An offset vector is applied to the original channel state information to generate modified channel state information. A subset of the channels is identified based on the modified channel state information. The original channel state information or the modified channel state information is reported.
Abstract:
A method of operating a base station comprising determining one or more time-frequency resources to be used for interference power estimation, generating a message indicating the one or more time-frequency resources to be used for interference power estimation, and transmitting the message to a subscriber station.
Abstract:
A family of low density parity check (LDPC) codes is generated based on a mother code having a highest code rate. The low density parity check (LDPC) codes include a codeword size of at least 1344. The LDPC codes also include a plurality of parity bits in a lower triangular form. The mother code is constructed by: selecting m number of rows and n number of columns; setting maximum column weights and row weights; designing a protograph matrix based on the set column weights and row weights and selected m and n; and selecting circulant blocks based on the protograph matrix.
Abstract:
A method of transmitting a control channel format indicator (CCFI), also known as PCFICH (Physical Control Format Indicator Channel), in case where the length of a coded CCFI is not an integer multiple of three, including mapping a plurality of two-bit CCFI into a codebook with each component codeword having three bits; generating a sequence of codewords selected from the codebook by repeating the selected component codeword for predetermined times; generating a codeword by concatenating the sequence of the selected component codewords with the original CCFI bits; and transmitting the codeword carrying information of CCFI. The method further includes a step of generating a permutation of each of the four codewords by assigning K repetitions of the three-bit component codeword to the number of K resource units respectively and mapping remaining K bits of each of the four codewords separately to the number of K resource units.
Abstract:
A first base station and mobile station are capable of mitigating interference resulting from communications from a second base station. The base station can determine if at least a portion of a paging slot overlaps with an available interval (AI) of the second base station in which the second base station transmits. The first base station adjusts an occurrence of the paging slot such that the paging slot overlaps and/or occurs within an unavailable interval (UAI) of the second base station wherein the base station does not transmit or transmits with limited resources.The mobile station also can determine if at least a portion of a listening slot overlaps with the AI and, using the same procedure that the first base station uses to recalculate the paging slot, recalculates the listening slot such that the listening slot overlaps and/or occurs within the UAI of the LDC mode.
Abstract:
A method and multiple antenna transmitting apparatus for transmitting a midamble in a wireless communication system, and a method and receiving device for receiving a midamble in a wireless communication system are provided. A method for transmitting a midamble by a multiple antenna transmitting device includes determining a pattern for a midamble including null subcarriers and pilot subcarriers, wherein each of the pilot subcarriers corresponds to one of a plurality of pilot signals, and each of the plurality of pilot signals corresponds to a different one of a plurality of transmit antennas, and transmitting the pilot signals in corresponding pilot subcarriers based on the determined pattern, wherein the pilot signals are transmitted in an Orthogonal Frequency Division Multiplexing (OFDM) symbol of a resource block comprising a plurality of subcarriers and a plurality of OFDM symbols.
Abstract:
A method and a circuit for generating cyclic redundancy checks. The method calculates a plurality of cyclic redundancy checks for a transport block with a plurality of information bits. At least one cyclic redundancy check among the plurality of cyclic redundancy checks is calculated based on a subset of information bits, and at least one information bit among the plurality of information bits is not within said subset of the information bits. In addition, a transport block cyclic redundancy check may be calculated based on all the information bits.
Abstract:
In a communication system, a base station transmits power setting information in a downlink Physical Downlink Shared Channel (PDSCH). A mapping scheme between overhead signals and reference signal (RS) overhead ratios, and the traffic-to-pilot ratios (T2P) calculation methods are established. A user-specific T2P ratio for certain OFDM symbols, a RS overhead ratio and a calculation method selected from the plurality of T2P calculation methods are assigned to a wireless terminal. An overhead signal corresponding to the assigned RS overhead ratio and the assigned T2P calculation method is selected in accordance with the mapping scheme and transmitted to the wireless terminal. In addition, the user-specific traffic-to-pilot ratio is transmitted to the wireless terminal. The wireless terminal calculates the traffic-to-pilot ratios across different transmission antennas and different OFDM symbols based on the received traffic-to-pilot ratio, the RS overhead ratio and the T2P calculation method indicated by the RS overhead signal.
Abstract:
A system and method for relaying communications in a wireless communication network. A relay station capable of relaying wireless communications includes a plurality of receiver antennas and a plurality of transmitter antennas. The plurality of receiver antennas is operable to receive, in a first time interval, a first communication from a base station and a second communication from a subscriber station. The plurality of transmitter antennas is operable transmit a third communication to the base station and the subscriber station in a second time interval. The relay station also includes a network encoder. The network encoder is configured to generate a combined symbol constellation. The combined symbol constellation is generated by combining a first symbol constellation transmitted in said first communication with a second symbol constellation transmitted in said second communication. Further, the third communication comprises said combined symbol constellation.
Abstract:
The present invention provides a method for transmitting pilots in a multi-carrier wireless transmission system. A wireless time-frequency transmission block is composed of N consecutive OFDM symbols in time domain and M consecutive physical sub-carriers in frequency domain, N and M are integers those are greater than or equal to 1. The method includes: partitioning the wireless time-frequency transmission block into several areas, and determining the position of pilots, of which the total number is a preset number, according to the time-frequency domain balancing principle of pilots of various antennas in various areas; inserting pilots at the pilot positions of each antenna corresponding to the antenna for transmission. In accordance with the present invention, the simultaneous transmission of multiple antennas is supported in a wireless time-frequency transmission block of a multi-carrier wireless transmission system.