Abstract:
In certain embodiments, a system includes a front wall, a rear wall positioned substantially parallel to the front wall, and first and second side walls each extending between the front wall and the rear wall. The first side wall includes a gate, and the second side wall is spaced apart from the first side wall such that the front wall, the rear wall, the first side wall, and the second side wall define a milking box stall of a size sufficient to accommodate a dairy livestock. The system includes an equipment portion located adjacent to the rear wall. The equipment portion houses a robotic attacher configured to extend between the rear legs of a dairy livestock located within the milking box stall in order to attach milking equipment to the dairy livestock.
Abstract:
A device suitable for attachment to a milking platform at a “milking position” has a strippings viewing area and a light source, which is operable to illuminate in a suitable manner the strippings viewing area to enhance the visibility to an operator of any mastitis symptoms in use and/or to illuminate the udder to facilitate inspection or treatment. The light source may also be operable to give continuous or intermittent colour signals to the operator and the device might also include an alpha-numeric area. The device might form part of a leg separator and/or sprayer and/or milk hose support. A milking platform with such a device is also claimed.
Abstract:
A milking hose support comprising a frame adapted for supporting a milking hose, the frame having a hose coupler located on a side and adapted for supporting a milking hose; a hinge assembly, wherein the hinge assembly includes a hinge and connects the frame to the hinge; and a first flat bar, wherein the first flat bar is coupled to the hinge assembly, and extends away from the frame, wherein the hinge permits a variable angle of rotation between the frame and the first flat bar.
Abstract:
In certain embodiments, a milking box comprises a storage area comprising a retractable hose, a hose lift belt, a cup holder base, a cup holder, and a cup holder bracket. The retractable hose couples to a cup and suspends the cup in the storage area. The hose lift belt couples to the retractable hose and is operable to retract the retractable hose. The cup holder base defines an aperture through which the retractable hose is positioned. The cup holder comprises a rimmed structure adapted to hold an attachment end of the cup. The cup holder is coupled to the cup holder bracket. The cup holder bracket is operable to open and close such that when closed, the rimmed structure of the cup holder aligns with the attachment end of the cup that is suspended from the retractable hose.
Abstract:
In certain embodiments, a system includes a front wall, a rear wall positioned substantially parallel to the front wall, and first and second side walls each extending between the front wall and the rear wall. The first side wall includes a gate, and the second side wall is spaced apart from the first side wall such that the front wall, the rear wall, the first side wall, and the second side wall define a milking box stall of a size sufficient to accommodate a dairy livestock. The system includes an equipment portion located adjacent to the rear wall. The equipment portion houses a robotic attacher configured to extend between the rear legs of a dairy livestock located within the milking box stall in order to attach milking equipment to the dairy livestock.
Abstract:
A system for applying disinfectant to the teats of a dairy livestock includes a carriage mounted on a track, the carriage operable to translate laterally along the track. The system further includes a robotic arm including a first member pivotally attached to the carriage, a second member pivotally attached to the first member, and a spray tool member pivotally attached to the second member. The robotic arm further includes a spray tool attached to the spray tool member. The system further includes a controller operable to cause at least a portion of the robotic arm to extend between the hind legs of a dairy livestock such that the spray tool may discharge a disinfectant to the teats of the dairy livestock.
Abstract:
A system for applying disinfectant to the teats of a dairy livestock includes a carriage mounted on a track, the carriage operable to translate laterally along the track. The system further includes a robotic arm including a first member pivotally attached to the carriage, a second member pivotally attached to the first member and a spray tool member pivotally attached to the second member. The robotic arm further includes a spray tool attached to the spray tool member. The system further includes a controller operable to cause at least a portion of the robotic arm to extend between the hind legs of a dairy livestock such that the spray tool may discharge a disinfectant to the teats of the dairy livestock.
Abstract:
In certain embodiments, a system includes a controller operable to access an image signal generated by a camera. The accessed image signal corresponds to one or more features of the rear of a dairy livestock. The controller is further operable to determine positions of each of the hind legs of the dairy livestock based on the accessed image signal. The controller is further operable to determine a position of an udder of the dairy livestock based on the accessed image signal and the determined positions of the hind legs of the dairy livestock. The controller is further operable to determine, based on the image signal and the determined position of the udder of the dairy livestock, a spray position from which a spray tool may apply disinfectant to the teats of the dairy livestock.
Abstract:
The invention refers to a device and a method for carrying a milking member (1), which includes at least one teacup (3) and which is connected to a milking machine (5) via a flexible conduit member (6). A support element (10) is fixedly mounted in or at a milking box (13) arranged to receive an animal to be milked. An arm arrangement (9) is pivotably connected to the support element and arranged to support the milking member at least in connection with the application of the teacup to a teat of the animal. The arm arrangement is movable from a first position, in which the milking member is located beside the animal, to a second position, in which the milking member is located below the animal. The device includes a first part arranged to lock the milking member in relation to the arm arrangement in order to facilitate the application of the teacup to the teat.
Abstract:
A vacuum transfer system for transferring food grade products. A biased ball in a cage with a substantially uninterrupted cage wall is utilized as a check valve. The ball may be biased by a weight to float in a predictable orientation relative to the cage. The biased ball assures that a certain portion of the ball will consistently engage with and aperture. The biased ball also minimizes chattering of the ball in the cage under high flow conditions.