Abstract:
A method for making inhomogeneous microparticles comprises a) providing an amount of each of at least two polyelectrolytes having a charge, b) providing an amount of a counterion having a valence of at least 2, c) combining the polyelectrolytes and the counterion in a solution such that the polyelectrolyte self-assembles to form inhomogeneous aggregates, and d) adding nanoparticles to the solution such that nanoparticles arrange themselves around the inhomogeneous aggregates to form inhomogeneous particles. The polyelectrolyte may have a positive or negative charge. The charge ratio R of total charge of the counterions to the total charge of the polyelectrolyte may be greater than 1.0.
Abstract:
The present invention relates to a microcapsule that can be used to form a rewritable medium for visual displays that are stable in the presence of electric fields having a strength that is typical in the work environment. The microcapsule of the invention comprises charged particles of one or more colors that are suspended in a phase change material that has a melting temperature in the range of between about 30° C. and about 200° C. The microcapsules can be used to form an electrophoretic coating that includes microcapsules of the invention distributed throughout a polymer matrix. The electrophoretic coating can be used to coat a substrate to form a rewritable medium.
Abstract:
An encapsulation material, intended for use in encapsulated electrophoretic displays, comprises the coacervation product of a polyanionic polymer having a vinyl main chain and a plurality of anionic groups bonded to the main chain, with a cationic or zwitterionic water-soluble polymer capable of forming an immiscible second phase on contact with the polyanionic polymer.
Abstract:
The present invention relates to a microcapsule that can be used to form a rewritable medium for visual displays that are stable in the presence of electric fields having a strength that is typical in the work environment. The microcapsule of the invention comprises charged particles of one or more colors that are suspended in a phase change material that has a melting temperature in the range of between about 30° C. and about 200° C. The microcapsules can be used to form an electrophoretic coating that includes microcapsules of the invention distributed throughout a polymer matrix. The electrophoretic coating can be used to coat a substrate to form a rewritable medium.
Abstract:
A method of making microcapsules including activating a fluid ejector at a frequency greater than 10 kilohertz where each activation of the fluid ejector generates essentially a drop, and the fluid ejector is fluidically coupled to a first fluid including a core component. The method further includes ejecting the drop of the first fluid into a second fluid, the drop having a volume. In addition, the method includes generating a microcapsule, that includes the core component, in the second fluid for each drop of the first fluid ejected.
Abstract:
Microcapsules comprising an agglomeration of primary microcapsules, each individual primary microcapsule having a primary shell and the agglomeration being encapsulated by an outer shell, may be prepared by providing an aqueous mixture of a loading substance and a shell material, adjusting pH, temperature, concentration and/or mixing speed to form primary shells of shell material around the loading substance and cooling the aqueous mixture until the primary shells agglomerate and an outer shell of shell material forms around the agglomeration. Such microcapsules are useful for storing a substance and for delivering the substance to a desired environment.
Abstract:
A display device including: (a) a plurality of microcapsules each including a polymerized, optionally hardened, micelle shell encapsulating a single bichromal ball in a liquid droplet, the ball having two hemispheric surfaces, one surface differing from the other surface in both color and electrical characteristics, and wherein the color of the bichromal ball is discernable through the shell and the liquid droplet; and (b) a substrate to receive the microcapsules.
Abstract:
The invention concerns a method for producing nanocapsules and microcapsules comprising a polyelectrolyte shell by surface precipitation from the solution, by applying a shell to template particles comprising the steps (a) providing a dispersion of template particles of suitable size in a salt-containing liquid phase which contains the components required to form the shell in a dissolved form and (b) precipitating the components from the liquid phase onto the template particles under conditions which enable the formation of a shell around the template particles that has a thickness of from 1 to 100 nm.
Abstract:
The invention relates to microcapsules with an average diameter of 0.1 to 5 mm, which can be obtained by (a) processing aqueous preparations of active agents with oil bodies in the presence of emulsifiers in order to produce O/W/ emulsions, (b) treating the resulting emulsions with aqueous solutions of anionic polymers, (c) bringing the resulting matrix into contact with aqueous chitosan solutions and (d) separating the resulting encapsulation products from the aqueous phase.
Abstract translation:本发明涉及平均直径为0.1-5mm的微胶囊,其可以通过(a)在乳化剂存在下加工活性剂的水性制剂来制备O / W /乳液,(b) 用阴离子聚合物的水溶液处理所得的乳液,(c)使得到的基质与壳聚糖水溶液接触,和(d)将所得的包封产物与水相分离。
Abstract:
A microbead having a matrix core comprising a hydrophilic matrix and droplets of active material entrained therein, and a secondary layer adjacent to the outer surface of the matrix core. The secondary layer may be ionically complexed or hydrogen bonded to the matrix core surface. Compositions comprising the microbeads suspended in solution may be sprayable. The microbeads of the invention may be controllable by exposing the microbeads to high or low humidity or moisture.