Abstract:
A flow focusing type one-step double emulsion droplet parallel generation device and method. The device comprises a fluid injection module, a liquid droplet generation module, a liquid droplet surface solidification module and a liquid droplet collection module, wherein the fluid injection module is used for conveying fluid of each phase to the liquid droplet generation module; and the liquid droplet generation module comprises a fluid distribution functional area, a liquid droplet preparation functional area and an auxiliary functional arca, wherein the liquid droplet distribution functional area is used for conveying the fluid of each phase into a channel of the fluid of each phase corresponding to the liquid droplet preparation functional area, and the fluid of each phase is gathered at the same point in a flow focusing structure and then is broken, and a fluid of an outer phase covers the fluid of the middle phase.
Abstract:
A renewable material for releasing a self-healing agent includes a renewable polymeric substrate with capsules and a reactant dispersed in the renewable polymeric substrate. The capsules may be formed from a first renewable shell polymer and may enclose the renewable self-healing agent. The reactant may be suitable for reacting with the renewable self-healing agent to form a polymer.
Abstract:
The present disclosure is directed to compositions including a microemulsion comprising lecithin, a polysorbate, an alkyl polyglycoside, and optionally a solvent. Uses of the microemulsions are also disclosed.
Abstract:
The invention relates to the use of an ampholyte copolymer as a colloidal stabilizer in the preparation of aminoplast core-shell microcapsules containing an active material, wherein the ampholyte copolymer comprises: 2 to 99 mol % of cationic monomer having at least one quaternary ammonium group, 1 to 98 mol % of acrylic based monomer, 0 to 97 mol % of non-ionic monomer, and wherein the ampholyte copolymer has more cationic charges than anionic charges, wherein the cationic charges of the ampholyte copolymer are exclusively due to the at least one quaternary ammonium group of the cationic monomer.
Abstract:
A microcapsule composition consisting essentially of core material enclosed in a shell, wherein the shell comprises a complex coacervate formed from at least two oppositely charged colloids, one of which is a protein, and wherein the protein is cross linked to a hardening agent by amide groups.
Abstract:
Gelatin capsules encapsulating an aroma material including at least one aroma compound may be applied to product packaging, such as food packaging etc., with a secondary protective coating, e.g., at the interface of a container and its closure device. The gelatin capsules can be ruptured or broken when the container is opened, thereby releasing the aroma compound and causing a favorable aroma for the consumer. The secondary protective coating can reduce or prevent degradation of the gelatin capsules during product packaging, transport, and storage, thereby enhancing their performance.
Abstract:
Embodiments of the disclosed technology provide an electronic ink microcapsule and a method for producing the same, wherein the electronic ink microcapsule comprises gelatin, polyanion, and an electrophoretic suspension, and the polyanion comprises a hydrolyzate of styrene-maleic anhydride-hexafluorobutyl methacrylate-vinyl triethoxysilane tetracopolymer.
Abstract:
A method for making inhomogeneous microparticles comprises a) providing an amount of each of at least two polyelectrolytes having a charge, b) providing an amount of a counterion having a valence of at least 2, c) combining the polyelectrolytes and the counterion in a solution such that the polyelectrolyte self-assembles to form inhomogeneous aggregates, and d) adding nanoparticles to the solution such that nanoparticles arrange themselves around the inhomogeneous aggregates to form inhomogeneous particles. The polyelectrolyte may have a positive or negative charge. The charge ratio R of total charge of the counterions to the total charge of the polyelectrolyte may be greater than 1.0.
Abstract:
A composition such as a water-based consumer product comprises material (e.g. perfume) encapsulated within shell capsules, each capsule comprising an encapsulating wall having an inner surface and an outer surface, with a coating on the inner surface and/or outer surface of the shell wall, the composition further comprising surfactant and/or solvent. The coating can improve the barrier properties of the shell and can enhance retention of the encapsulated materials within the shell.
Abstract:
Microcapsules comprising an agglomeration of primary microcapsules, each individual primary microcapsule having a primary shell and the agglomeration being encapsulated by an outer shell, may be prepared by providing an aqueous mixture of a loading substance and a shell material, adjusting pH, temperature, concentration and/or mixing speed to form primary shells of shell material around the loading substance and cooling the aqueous mixture until the primary shells agglomerate and an outer shell of shell material forms around the agglomeration. Such microcapsules are useful for storing a substance and for delivering the substance to a desired environment.