Abstract:
The present invention relates to the field of aerodynamics. More particularly, the present invention relates to manipulating air flow over a surface, such as the surface of a duct of a ducted fan vehicle. By controlling air flow over, at, or around the surface of a duct, the flight of the vehicle can be controlled. One embodiment of the invention provides a vertical take-off and landing (VTOL) ducted-fan vehicle comprising means for producing steady or unsteady blowing at a surface of a duct for producing control forces and moments for controlling flight. The means for unsteady blowing can be provided by synthetic jets and the means for steady blowing can be provided by a pressurized air supply. The synthetic jets can be integrated into the ducted-fan vehicles in numerous ways, including at the surface of the leading and/or trailing edge of the ducts. The synthetic jets can be independently operated to control the flight of the vehicle. A novel use of these inventive flow control concepts is to apply the control asymmetrically to the duct in order to produce an imbalance in forces, thus resulting in a moment or torque, which can be used to control flight.
Abstract:
A ducted fan core for an unmanned aerial vehicle is provided that accommodates a wide variety of payloads. The ducted fan core comprises a frame, attached to which are an engine, gearbox assembly, fan, and a plurality of control vanes. A first surface on the frame comprises a plurality of connects or electrical traces. The plurality of connects are used to removably attach a variety of pods carrying various payloads. Thus, a wide variety of payloads may be delivered using the same unmanned aerial vehicle, simply by removing and attaching different pods to a fixed vehicle core. These pods may be shaped so as to form part of the vehicle exterior, and when the pods are attached to the frame, they enhance the aerodynamics of the vehicle.
Abstract:
Takeoff and landing modes are added to a flight control system of a Vertical Take-Off and Landing (VTOL) Unmanned Air Vehicle (UAV). The takeoff and landing modes use data available to the flight control system and the VTOL UAV's existing control surfaces and throttle control. As a result, the VTOL UAV can takeoff from and land on inclined surfaces without the use of landing gear mechanisms designed to level the UAV on the inclined surfaces.
Abstract:
A manipulator arm system on a ducted air-fan UAV is disclosed herein. The target site may be accurately located by the UAV, and the manipulator system may accurately locate the payload at the target site. The manipulator arm may select tools from a toolbox located on-board the UAV to assist in payload placement or the execution of remote operations. The system may handle the delivery of mission payloads, environmental sampling, and sensor placement and repair.
Abstract:
Autonomous micro air vehicles surveillance systems are provided. A MAV system of one embodiment includes an MAV and a launch pad. The MAV has an engine that is adapted to power the MAV. The launch pad has a starter that is adapted to start the engine in the MAV when the MAV is resting on a launching surface of the launch pad. The launch pad further has a battery to power the starter.
Abstract:
An aircraft for carrying at least one rigid cargo container includes a beam structure with a forward fuselage attached to the forward end of the beam structure and an empennage attached to the rearward end of the beam structure. Wings and engines are mounted relative to the beam structure and a fairing creates a cargo bay able to receive standard sized intermodal cargo containers. Intermodal cargo containers of light construction and rigid structure are positioned within the cargo bay and securely mounted therein. The beam structure is designed to support flight, takeoffs and landings when the aircraft is empty but requires the added strength of the containers securely mounted to the beam structure when the aircraft is loaded. The aircraft is contemplated to be a drone.
Abstract:
A powerplant system for a vehicle such as a hybrid UAV includes a miniature gas turbine engine and a gearbox assembly. The engine is mounted to the gearbox assembly through a support structure which provides for pivotal movement of the engine relative thereto. The input gear is engaged with two gears such that the pivoted engine arrangement permits the input gear to float until gear loads between the input gear and the first and second gear are balanced. Regardless of the gear teeth errors or gearbox shaft misalignments the input gear will float and split the torque between the two gears.
Abstract:
VTOL micro-aircraft comprising a first and a second ducted rotor mutually aligned and distanced according to a common axis and whose propellers are driven in rotation in mutually opposite directions. Between the two ducted rotors are positioned a fuselage and a wing system formed by wing profiles forming an X or an H configuration and provided with control flaps.
Abstract:
The invention concerns a remote-controlled flying machine, in particular for surveillance and inspection, capable of hovering and comprising a spherical open-worked resistant shroud integral with a cylindrical fairing wherein rotates a propeller powered by an engine housed in a fuselage secured to the fairing with radial arms and straightening vanes.
Abstract:
A cooling system for a hybrid aircraft includes an inlet which extends through the body to communicate airflow to a powerplant subsystem and out through an exhaust within a rotor duct. In a hover mode, there is a significant low-pressure area created inside the rotor duct by the rotor system. The low-pressure area within the rotor duct assists in drawing air through the inlet and over the engine via the exhaust. A cooling fan is located adjacent the inlet to augment cooling-air flow. The cooling fan is smaller than conventional practice because it does not have to provide the entire pressure difference to force air-cooling flow over the engine. In a transition mode, the low-pressure area created inside the rotor duct decreases but ram air pressure through the inlet increases. In a forward flight mode, the pressure inside the rotor duct is approximately atmospheric but significant ram air is provided from the inlet due to forward flight speed.