Abstract:
A high efficiency laminar flow burner system for proving a stream of heat energy including a supply input module for providing fuel and laminar streams of air to a combustion manifold. The combustion manifold includes an air-fuel mixing system, a stoichiometric unit, and a refractory unit each coupled to one another. A first combustion stream is established at the air-fuel mixing chamber system as fuel exits an injector device at direction perpendicular to the laminar air intake stream. A laminar air intake stream traveling from the supply input module and along the staging passageway passes through a stoichiometric unit body at a plurality of air intakes to meet with the first combustion stream within to define a second combustion stream for introduction from the stoichiometric unit to the refractory unit. The refractory unit thus defines a third combustion stream as the second combustion stream travels across a refractory passageway.
Abstract:
A heat management system is capable of managing unlimited hydronic heat sources and unlimited heating zones, each located within a desired area and each controlled by temperature sensors. The system uses plural system heating sources to heat a heating solution (preferable glycol-based) that is either heated directly or through a liquid-to-liquid heat exchanger. The heating solution is passed through various plumbing configurations to heat domestic water for users and to heat zones or areas in which user will live. The heat management system of the invention may be used for several applications including RV, marine and home hot water and heating applications.
Abstract:
A gas combustion device 1 comprises a combustor 11 for burning fuel gas supplied from a gas source, an air blower 15 for adjusting the amount of air in a cylindrical casing 5 which contains the combustor 11 therein; an ejector 7 with a primary air hole 37 for sucking a primary air into a gas passage leading from the gas source to the combustor 11 due to negative pressure caused by flow rate of the fuel gas supplied to the combustor 11 and an ignition device 9 for igniting mixed gas injected from a wick 39 provided ahead of the ejector 7. When fire is set to the mixed gas of the wick 39, ignitability of the mixed gas is improved by decreasing the amount of air in the casing. After ignition, combustion is maintained in the state where combustibility of the combustion gas in the combustor 11 is improved by increasing the amount of air in the casing 5.
Abstract:
A photothermal power generation device designed to heat an emitter receives a supply of fuel and air, burns the fuel to produce combustion gas, and converts light emitted from the emitter into electric power by means of a photoelectric conversion element. The device is provided with a flow resistance adjusting unit for adjusting a flow resistance of the combustion gas in the emitter in accordance with a state of combustion gas, a combustor fire vent adjusting unit for adjusting the shapes of, or a number of, fire vents formed in the combustor in accordance with a required output, or a discharge state adjusting unit for adjusting a discharge state of exhaust gas in accordance with a state of the combustion gas. This photothermal power generation device provides uniform light-emitting intensity and enhances power generation efficiency.
Abstract:
A gas heater is provided with a combustion status sensor that provides heater performance data to a controller that controls the heater according to the sensor data and stored calibration parameters optimized for the particular heater.
Abstract:
A system and method for controlling operation of a water heater provides generating a heating demand signal which a minimum level corresponds to a required heat input for maintaining water temperature in the water tank in case of no exogenous demand for water. Responsive to the heating demand signal, air flow from the forced draft blower and flow of combustible fluid from the combustible fluid delivery system are varied to produce combustion product over a minimum 15 to 1 ratio. This allows water heating to be varied to meet maximum expected exogenous demand or to maintain water temperature with no exogenous demand.
Abstract:
A resistance heater heats air forced by a fan into a woodstove secondary combustion chamber having an ignitor. The fan, heater and ignitor are controlled by a temperature sensor for gas flowing from a primary combustion chamber to a secondary combustion chamber. Two ignitors, extending through the stove back wall into the secondary combustion chamber, are controlled by the temperature sensor.
Abstract:
A feed forward system coupled with a feed back system is used to control the efficiency of combustion of fuel in a furnace. The feed forward system has sensors to measure the fuel flow rate and the quality of the fuel. The measurement of the sensors is used to calculate the theoretical oxygen flow rate needed to combust the fuel. The theoretical oxygen flow rate and an excess oxygen level are used to determine the actual air flow rate, which is used to control the air input to the furnace. The feedback system has a sensor to detect combustibles near the exhaust of the furnace. The measurement of the combustible sensor is used to control the excess oxygen level. In a preferred embodiment, another sensor, an oxygen sensor, is placed near the exhaust of the furnace. The oxygen sensor provides a dynamic check on the actual amount of excess oxygen level within the furnace. Finally, the oxygen sensor is also used as a safety device in providing redundancy to the combustible sensor.