Abstract:
A method and system for determining properties of a fluid involves interacting the fluid with a standing wave in a first state to establish the standing wave in a second state, analyzing an electric signal associated with the standing wave to determine a characteristic associated with the second state, and determining the property of the fluid by comparing the characteristic with a function that associates a plurality of properties with a corresponding plurality of characteristics. The characteristic can include a maximum phase slope, a phase slope associated with a resonant frequency, a maximum magnitude associated with the resonant frequency, the value of the resonant frequency, or any combination thereof.
Abstract:
A method and system for determining properties of a fluid involves interacting the fluid with a standing wave in a first state to establish the standing wave in a second state, analyzing an electric signal associated with the standing wave to determine a characteristic associated with the second state, and determining the property of the fluid by comparing the characteristic with a function that associates a plurality of properties with a corresponding plurality of characteristics. The characteristic can include a maximum phase slope, a phase slope associated with a resonant frequency, a maximum magnitude associated with the resonant frequency, the value of the resonant frequency, or any combination thereof.
Abstract:
An inline measuring device includes a vibration-type measurement pickup having at least one measuring tube, which has a medium to be measured flowing through it during operation. The measuring tube is made by means of an exciter arrangement to execute, at least at times and/or at least in part, lateral oscillations and, at least at times and/or at least in part, torsional oscillations about an imaginary measuring tube longitudinal axis. The torsional oscillations alternate with the lateral oscillations or are, at times, superimposed thereon. Also included is a sensor arrangement for producing oscillation measurement signals correspondingly representing oscillations of the measuring tube. Measuring device electronics controlling the exciter arrangement generates, by means of at least one of the oscillation measurement signals and/or by means of the exciter current, at least at times, at least one measured value, which represents the at least one physical quantity to be measured. Additionally, the measuring device electronics also determines a first intermediate value, which corresponds to the lateral current component of the exciter current serving to maintain the lateral oscillations of the measuring tube and/or to a damping of the lateral oscillations of the measuring tube, as well as a second intermediate value, which corresponds to a torsional current component of the exciter current serving to maintain the torsional oscillations of the measuring tube and/or to a damping of the torsional oscillations of the measuring tube. With the goal of producing the measured value at high accuracy, such value is determined also taking into consideration these two intermediate values. The measured value obtained in this way is distinguished especially by high accuracy also in the case of media of two, or more, phases.
Abstract:
A rheometer and method of making rheological measurements is disclosed, in which a sample is supported between plates and an alternating movement is applied by a driver, support rod and plate. Force and displacement measurements are taken and the property determined from those measurements. The vibrating signal which is applied is in the form of a frequency sweep signal having a monotonic group delay function. The top plate is provided with a surface which causes a meniscus to form up a side edge of the plate to reduce the spring nature of the sample when the movement is supplied to the sample, and a supporting rod which supports the top plate is preferably formed from a material having a low coefficient of thermal expansion so that the gap between the plates is maintained substantially constant if the sample is heated to take measurements at different temperatures.
Abstract:
A vibration detector for determining and/or monitoring a predetermined fill level in a container. The detector includes an oscillatable unit, a driver/receiver unit and an evaluation unit. The vibration detector can, additionally, be used as a viscosity sensor or as a density sensor. For providing a multivariable sensor, a microprocessor is provided in the oscillation circuit formed of oscillatable unit and feedback electronics. The microprocessor corrects the phase of the feedback electronics over a predetermined frequency bandwidth in such a way that the sum of the phases of the feedback electronics and the microprocessor follows a predetermined function f(v).
Abstract:
The viscometer provides a viscosity value (Xη) which represents the viscosity of a fluid flowing in a pipe connected thereto. It comprises a vibratory transducer with at least one flow tube for conducting the fluid, which communicates with the pipe. Driven by an excitation assembly, the flow tube is vibrated so that friction forces are produced in the fluid. The viscometer further includes meter electronics which feed an excitation current (iexc) into the excitation assembly. By means of the meter electronics, a first internal intermediate value (X1) is formed, which corresponds with the excitation current (iexc) and thus represents the friction forces acting in the fluid. According to the invention, a second internal intermediate value (X2), representing inhomogeneities in the fluid, is generated in the meter electronics, which then determine the viscosity value (Xη) using the two intermediate values (X1, X2). The first internal intermediate value (X1) is preferably normalized by means of an amplitude control signal (yAM) for the excitation current (iexc), the amplitude control signal corresponding with the vibrations of the flow tube. As a result, the viscosity value (Xη) provided by the viscometer is highly accurate and robust, particularly independently of the position of installation of the flow tube.
Abstract translation:粘度计提供粘度值(X'eta),其表示在与其连接的管道中流动的流体的粘度。 它包括具有至少一个用于传导流体的流管的振动换能器,其与管道连通。 由激励组件驱动,流管被振动,使得在流体中产生摩擦力。 粘度计进一步包括将激励电流(i exc)馈送到激励组件中的仪表电子装置。 通过仪表电子设备形成第一内部中间值(X 1> 1),其对应于激励电流(I SUB),因此表示作用的摩擦力 在流体中。 根据本发明,在仪表电子设备中产生表示流体中不均匀性的第二内部中间值(X 2 S 2 N),其然后确定粘度值(X'eta SUB >),使用两个中间值(X 1,X 2,N 2)。 优选地,通过用于激励电流的振幅控制信号(y SUB AM)来对第一内部中间值(X SUB1)进行归一化(i> SUB SUB >),该幅度控制信号对应于流管的振动。 结果,由粘度计提供的粘度值(X'ηη)高度精确和鲁棒,特别是独立于流动管的安装位置。
Abstract:
An apparatus for measuring the viscosity and temperature of a fluid, for example an engine oil, comprises a transducer, which is arranged to vibrate when provided with a drive signal to produce an ultrasonic shear wave; an impedance matching layer that is inserted into the fluid and which couples at least a portion of the ultrasonic waves produced by the transducer into the fluid and from which at least a portion of the wave is reflected back to the transducer; a detector which is adapted to detect a measurement signal produced by the transducer when the reflected wave is incident upon the transducer; a control circuit which varies the frequency of the drive signal applied to the transducer and hence the frequency of the ultrasound signal; a processing means which determines the optimum frequency of the drive signal at which the measurement signal output from the transducer has its minimum amplitude; and a temperature determining means which estimates the temperature of the fluid as a function of the optimum frequency.
Abstract:
A rheometer and method of making rheological measurements is disclosed, in which a sample is supported between plates and an alternating movement is applied by a driver, support rod and plate. Force and displacement measurements are taken and the property determined from those measurements. The vibrating signal which is applied is in the form of a frequency sweep signal having a monotonic group delay function. The top plate is provided with a surface which causes a meniscus to form up a side edge of the plate to reduce the spring nature of the sample when the movement is supplied to the sample, and a supporting rod which supports the top plate is preferably formed from a material having a low coefficient of thermal expansion so that the gap between the plates is maintained substantially constant if the sample is heated to take measurements at different temperatures.
Abstract:
The present invention comprises a noncontact method for measuring viscosity and/or surface tension information of a liquid in a liquid containment structure. The steps of the method include exciting a surface of the liquid with an excitation burst of acoustic energy that causes the surface to oscillate; generating a positional data set comprised of a plurality of positional measurements related to the detected position of the surface at a plurality of times after the surface is excited; generating a frequency domain data set from the positional data set, the amplitude spectrum of the frequency domain data set comprising information about the oscillation frequency of at least one vibrational mode of the of the surface as it oscillates; and processing the frequency domain data set and/or the positional data set to yield information about the surface tension and/or viscosity of the liquid. A Fast Fourier Transform technique may be used in generating the frequency domain data set.
Abstract:
The present invention relates to a miniature rheometer, a parallel rheometer, and improved force sensor elements which may advantageously be used in combination with the miniature rheometer and the parallel rheometer. The miniature rheometer is adapted to determine rheological characteristics of materials which are provided in the form of small quantity samples. The miniature rheometer comprises an actuating element, a sensing element and a feedback circuit to provide rebalance of the shear force applied by the sample to the sensing element, which insures an exceptional stiffness in determining the shear strain so as to allow measurements of high accuracy. The parallel rheometer of the present invention allows simultaneous measurements of a plurality of samples so as to allow of a plurality of samples within a short time period. The force sensor element according to the present invention allows simultaneous measurement of a shear force and a normal force applied to the sensor element. Moreover, a rheometer is provided which comprises a force sensor based on stress-optic material.