摘要:
It is possible eliminate a fringe pattern produced at the time of incidence of polarized light of a light distribution control element, in which stray light derived from outside unnecessary light in a liquid crystal display apparatus or the like can be effectively reduced, and bright, wide viewing angle characteristics can be achieved when the display is viewed at any angle by an observer. In a light distribution control element constituted of a transparent base member, an array of a plurality of micro-lenses (transparent beads) densely arranged on the transparent base member and a light absorbing layer having very small opening portions substantially at focal positions of the micro-lenses, the transparent base member is constituted of a transparent body which is substantially isotropic optically or a transparent body having uniaxial optical anisotropy.
摘要:
A semiconductor device for optically coupling a semiconductor light-emitting device to an optical fiber, includes (a) a lens which focuses lights emitted from the semiconductor light-emitting device, onto the optical fiber, (b) a shell which supports the lens therewith, the shell being comprised of a cylindrical first portion, a second portion integral with the first portion at an upper end of the first portion and being formed centrally with an opening into which the lens is to be fit, and a cylindrical third portion extending from the first portion upwardly beyond the second portion, (c) glass arranged around the lens for keeping the lens and the opening hermetically sealed, and (d) a reinforcement formed on at least one of upper and lower surfaces of the second portion for preventing the shell from being deformed due to a stress acting on the shell.
摘要:
A spherical lens (K) for an optoelectronic module has a plane surface that is provided with a solderable metal coating (M). The spherical lens (K) is soldered by means of its plane, metallized surface (M) onto a solder pad (P) applied to the substrate (T).
摘要:
An optical module 10 comprises a mounting member 20, a lens holding member 30, a lens 32 and an optical semiconductor element 22. The mounting member 20 and the lens holding member 30 are arranged along a predetermined axis 12. The optical semiconductor element 22 is optically coupled to the lens 32. The wall portion of the lens holding member 30 comprises a first inner surface 30g and a second inner surface 30f. The first inner surface 30g is located outside a reference surface extending in a direction of the predetermined axis and intersecting with a supporting portion to form a predetermined closed line, and the second inner surface 30f is located inside the reference surface
摘要:
A force-equalized pivot mount for a telescopic sight such as a riflescope includes a lens holder having a pivot end positioned between a fixed half-socket and an opposing movable half-socket. A resilient member biases the movable half-socket toward the fixed half-socket to pivotally capture the pivot end therebetween. Rotation of the lens holder generates first lateral friction forces at a first sliding interface between the fixed half-socket and the pivot end that are equalized by oppositely-directed second friction forces generated at a second sliding interface between the movable half-socket and the pivot end. Force-equalization prevents the lens holder from walking within the pivot mount, reduces wear at the sliding interfaces, and improves aiming accuracy.
摘要:
An objective-solid immersion lens assembly includes a unitary solid immersion lens body having an optical axis, an evanescent wave-conducting region along the optical axis, and a substantially spherical surface portion surrounding the optical axis oppositely the wave emitting region. A discrete objective lens is attached to, or otherwise formned at, the solid immersion lens body at the substantially spherical surface portion to be in alignment with the optical axis. Several manufacturing methods for making an air bearing slider including the objective-solid immersion lens assembly are disclosed.
摘要:
A device for optically connecting an optical element, for example an end portion of an optical fibre (2), with a spherical lens (4), comprises a retainer (6) and a connector element (14). The retainer (6) fixes the optical element in a predeterment position in relation to an outer reference surface (8) of the retainer. The connector element (14) has at least one surface (18) for determining the position of the spherical lens (4) and at least one surface (16) for determining the position of the retainer (6) in relation to the spherical lens (4) and thereby for defining the relative position between the optical element (2) and the spherical lens (4). The surface (18) for determining the position of the spherical lens (4) is constituted by a conical surface (18) tapering in the direction of the optical element (2).
摘要:
An opto-electronic interconnect is disclosed that provides for optical communication between chip devices. Optical signals, transmitted from one of the edges of a first chip device, are directed by a lens focusing apparatus to the edge of a second chip device, whereupon the signal is detected. The optical ports for transmission or reception of the optical signals are grouped into an optical segment, which may have either a semi-circular or planar geometry.
摘要:
An optical device is fitted into a casing (2) in a state in which a pair of lenses (6, 8) have the same optic axis (Ra). The casing (2) includes two identically shaped casing halves (1A, 1B), with the pair of lenses (6, 8) being embraced and held by the two casing halves in a state in which a gap (S) is left between the surfaces of the two casing halves.
摘要:
There is disclosed herein a cell assembly for use in spectrophotometric analysis or detection of a substance within a small sample volume, such as in a capillary sample cell. The assembly comprises a transparent lens having the shape of a ball, sphere or cylinder, referred to as a "ball lens," and which is placed in direct contact or close proximity to the exterior wall of the capillary cell. This lens and cell are mounted together, any may form a removable cell assembly. The small volume may be contained within the ball lens itself. The ball lens serves to concentrate and direct light into the capillary cell. The arrangement also significantly reduces the sensitivity to alignment of replaceable cells thereby permitting easier mounting and replacement of such cells.