Abstract:
A high pressure discharge lamp includes a quartz glass bulb, a conductive element which is sealed at a sealing portion of the bulb, and a pair of electrodes. Each electrode is disposed in the quartz glass bulb so as to be opposite the other and connected to the conductive element. A part of each electrode is sealed with the quartz glass bulb at the sealing portion so as to generate a contacting portion formed by the part of each electrode and the bulb. The maximum length, Lmax, of the contacting portion is defined as: Lmax (mm)≦200/(P×D); and the minimum length, Lmin, of the contacting portion is defined as: Lmin (mm)≧0.8/(D2×π) or Lmin (mm)≧0.7 whichever is longer, where D is the diameter (mm) of the electrode and P is the power (W) supplied to the electrode.
Abstract translation:高压放电灯包括石英玻璃灯泡,密封在灯泡的密封部分的导电元件和一对电极。 每个电极设置在石英玻璃灯泡中以便彼此相对并连接到导电元件。 每个电极的一部分在密封部分用石英玻璃灯泡密封,以便产生由每个电极的一部分和灯泡形成的接触部分。 接触部分的最大长度L max max定义为:L max(mm)≤= 200 /(PxD); 并且接触部分的最小长度L min min定义为:L min min(mm)> = 0.8 /(D 2×x 2 )或L分钟(mm)> 0.7取较长者,其中D是电极的直径(mm),P是提供给电极的功率(W)。
Abstract:
A high-pressure discharge lamp has an outer envelope (1) in which a discharge vessel (11) is arranged. The discharge vessel encloses a discharge space (13) with an ionizable filling. The discharge vessel has two mutually opposed neck-shaped portions (2,3) through which current supply conductors (4,5) extend to a pair of electrodes (6,7) in the discharge space. A lamp base (8) of electrically insulating material supports the discharge vessel. The lamp base also supports the outer envelope (1). The outer envelope encloses the current supply conductors and is connected to the lamp base in a gas-tight manner. By controlling the atmosphere in the outer envelope, a simplified and compact high-pressure discharge lamp is provided with an accurate positioning of the discharge vessel with respect to the optical axis of the lighting system. The high-pressure discharge lamp can be suitably applied in an assembly with a reflector.
Abstract:
An apparatus for producing a stable, high pressure plasma column with long length, and high axial uniformity. Rotating a gas-filled tube about an horizontal axis creates a vortex with minimal, or no shear flow. Such a vortex provides a stable equilibrium for a central column of high temperature gas and plasma when, for a given rotation speed, the centrifugal force dominates over the gravitational force inside the smallest radial dimension of the containment envelope. For gas pressures sufficiently high that the particle mean free path is short compared with the thickness of the gas layer between the central plasma column and the wall, thermal transport across this sheath layer is small and its temperature is low. High pressure discharges inside a rotating envelope may be sustained by a variety of means, including electrical, electromagnetic and chemical; they may find application in plasma torches, light sources, etc. One preferred embodiment used direct current between co-rotating electrodes to sustain a one-meter-long plasma column less than 5 mm in diameter. Another preferred embodiment employed microwave heating to produce a perfectly centered plasma flame 0.5 meters long into which tens of kilowatts of power can be coupled.
Abstract:
The present invention is directed to methods of making arc tubes for high intensity discharge lamps. The bottom portion of the light emitting chamber of the arc tubes is flattened in an area between the electrodes to reduce the distance between the bottom wall of the arc tube and the arc, and to increase the surface area of the pool of condensed halides during operation of a metal halide lamp. The flattened bottom of the arc tubes may be generally planar, slightly arcuate longitudinally and/or transversely, or slightly v-shaped longitudinally and/or transversely. The top portion of the arc tube conforms generally to the shape of the arc during operation of the lamp.
Abstract:
Tungsten electrodes are arranged on two rhenium rods in an electrode chamber in a high-pressure gas discharge lamp, such that the rhenium rods project to inside the electrode chamber.
Abstract:
A high pressure, lamp may be made in a pressure vessel by using an induction coil to melt an edge portion of a sealing wafer pressed against the circumference of an opening in the body of the lamp envelope. The pressure vessel and the lamp envelope are filled with desired fill materials. Induction heating is carried out by the induction coil and induction receiver that presses against the wafer, the lamp envelope or both to hold the melting piece or pieces in contact. The induction receiver may be fused to the lamp body forming a functional part of the overall lamp structure. The preferred resulting lamp includes a bonded metal piece that can be conveniently used for electrical or mechanical coupling or positioning of the lamp with respect to a base.
Abstract:
A temperature control system for a source of electromagnetic radiation, such as an arc lamp, in a collecting and condensing system including a first reflector having a first focal point and a first optical axis, and a second reflector having a second focal point and a second optical axis. The source may be located proximate to the first focal point of the first reflector to produce rays of radiation that reflect from the first reflector toward the second reflector and substantially converge at the second focal point. A sensor, such as a voltage or a temperature sensor, may be placed near the source, and produces an output which may be substantially proportional to an attribute of the source. A comparator compares the output to a predetermined value and produces a difference between the output and the predetermined value. A fan placed proximate to the source has an air flow to cool the source which may be substantially proportional to the difference between the output and the predetermined value if the output is greater than the predetermined value. Otherwise, if the output is less than the predetermined value, the air flow may be substantially zero. The temperature control system may also include a heater placed near the source which produces a heat flux. In this case the comparator compares the output to a second predetermined value, producing a second difference between the output and the second predetermined value, and the heat flux may be substantially proportional to the second difference if the output is less than the second predetermined value. Otherwise, if the output is greater than the second predetermined value the heat flux may be substantially zero.
Abstract:
A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.
Abstract:
The high-pressure discharge lamp comprises a lamp vessel (1) in which an anode (4) and a cathode (5) are disposed spaced apart by an electrode distance D of 1-2 mm, the anode (4) having a tip (9) with a blunt end surface S. The area of the end surface S in mm2 and the lamp current I in amperes satisfy a relationship according to which 0.09≦S/I≦0.16, with 3.5≦I≦8.0 amperes. The ionizable filling containing metal halide comprises an amount of mercury between 65-125 mg/cm3. The power range of the lamp is between 200 and 400 watts. The calculated power gap ratio, PGR=P/D, is over 120 W/mm. The lamp is suitable for comparatively high brightness applications and at the same time is comparatively stable and has a comparatively long life.
Abstract:
A high pressure, lamp may be made in a pressure vessel by using an induction coil to melt an edge portion of a sealing wafer pressed against the circumference of an opening in the body of the lamp envelope. The pressure vessel and the lamp envelope are filled with desired fill materials. Induction heating is carried out by the induction coil and induction receiver that presses against the wafer, the lamp envelope or both to hold the melting piece or pieces in contact. The induction receiver may be fused to the lamp body forming a functional part of the overall lamp structure. The preferred resulting lamp includes a bonded metal piece that can be conveniently used for electrical or mechanical coupling or positioning of the lamp with respect to a base.