Abstract:
A double-ended high intensity discharge lamp includes a luminous tube which comprises an inner tube and an outer tube. At least one electrical member is securely fastened inside the luminous tube and at least one illuminator supported inside the luminous tube with a distributor connected with the electrical member to receive power and supply the illuminator. The outer tube is another protective shield to stop spreading in explosion of the illuminator.
Abstract:
A double-ended high intensity discharge lamp includes a luminous tube and reflective layer covering at a reflective portion provided on at least a portion of aid luminous tube for reflecting light emitted from an illuminator supported in the luminous tube towards the reflective portion to project towards another opposing side of the luminous tube.
Abstract:
A high pressure gas discharge lamp comprising a discharge vessel, an outer envelope enclosing said discharge vessel with an interspace between the outer envelope and the discharge vessel. A UV-enhancer having a wall enclosing an electrode space with a filling gas and an internal electrode extending from the electrode space through the wall to the interspace. Said UV-enhancer is arranged in said interspace between the outer envelope and the discharge vessel, said wall of the UV-enhancer being made of ceramic material and contains said filling gas. The electrode is directly sealed into the wall.
Abstract:
A high pressure discharge lamp of the present invention is provided with a light-emitting bulb comprising a light-emitting part and sealing sections; metal foils embedded within the sealing sections; and a pair of electrodes having one end protruding into the light-emitting part and having the other end embedded in the corresponding sealing section and joined to the corresponding metal foil. An embedded length L (mm) of the electrodes that is defined by the length between a light-emitting part side end of the metal foil and the border section between the protruding section and the embedded section of the electrode, and the temperature T (° C.) at the joint region of the electrode and the metal foil are set to satisfy 1.8≦2.8 and T≦970.
Abstract:
A high-pressure discharge lamp may include a ceramic discharge vessel and a longitudinal axis, with electrodes respectively being led out from the discharge vessel by means of a feed-through via capillaries, wherein a tubular cermet part, which consists of individual layers of different composition layered axially in succession, is fitted on the capillary, each layer containing Mo and Al2O3, the proportion of Mo in the first layer facing toward the capillary being from 3 to 15 vol. % and in the last layer being from 85 to 97 vol. %, and a molybdenum cover cap, the cover cap being welded to the feed-through and the cover cap being connected to the cermet part by means of solder containing metal, and the connection between the capillary and the cermet part being established by means of high-melting glass solder or sinter-active Al2O3 powder.
Abstract translation:高压放电灯可以包括陶瓷放电容器和纵向轴线,电极分别通过毛细管通过馈通从放电容器引出,其中管状金属陶瓷部件由不同的不同层 组成分层的组合物被装配在毛细管上,每层含有Mo和Al 2 O 3,第一层中Mo朝向毛细管的比例为3至15体积%。 %,最后一层为85〜97体积%。 %和钼盖盖,盖帽焊接到馈通,并且盖帽通过含金属的焊料连接到金属陶瓷部分,并且毛细管和金属陶瓷部件之间的连接是借助于 高熔点玻璃焊料或烧结活性Al2O3粉末。
Abstract:
A compound body has a first body part (15) made of glass and a mechanical connection (20, 60) which is melted on the first body part (15) and contains aluminum.
Abstract:
An electrode assembly for a discharge lamp, particularly a ceramic metal halide (CMH) lamp, having a ceramic body defining a discharge chamber and at least one leg having an opening therethrough. An electrode assembly is received at least in part in the body, preferably including a niobium mandrel, a molybdenum mandrel, and a molybdenum overwind received over the mandrel. A tungsten portion is then joined to the molybdenum composite. Adjacent turns of the overwind are spaced by a gap to facilitate receipt of an associated seal material on the overwind and the molybdenum mandrel. The gap is approximately 10% to 50% of the dimension between adjacent turns of the overwind relative to a diameter of the overwind.
Abstract:
A glass sealing and electric lamps with such sealing are provided. The lamp is comprised of a sealing glass body, lead-in wires passing through the sealing glass body, a high electric resistance glass layer encapsulating each of the lead-in wires and separating them from the sealing glass body. The high electric resistance glass layer is joined both with the lead-in wires and with the sealing glass body in a manner providing hermetic closure of the glass sealing.
Abstract:
A ceramic arc tube for high intensity discharge (HID) lighting applications is provided wherein the arc tube contains a high buffer gas pressure. A method and apparatus for making the arc tube are also provided wherein RF induction heating is used to melt a frit material to form a hermetic seal.
Abstract:
A ceramic arc tube having an integral susceptor for RF inductive sealing is described. The integral susceptor in the form of an electrically conductive coating is applied directly to the surface of the arc tube in the seal region. This enables RF heating which is sufficient to melt a frit material and hermetically seal the arc tube. The integral susceptor further provides for a more controlled placement of the seal.