摘要:
An image compression unit of the invention includes a preprocessing unit that performs preprocessing for converting a first bit string representing intensity of pixels of which image data is composed into a second bit string, a number of digits of which is smaller than a number of digits of the first bit string, based on a predetermined region included in the image data and a first attribute information for identifying an attribute of the predetermined region, with the preprocessing being associated with the predetermined region of the image data and a bit string conversion unit which converts the second bit string into a third bit string based on distribution of frequency of appearance of the intensity in the second bit string and the first attribute information such that, for the pixel having higher frequency of appearance, the number of bit planes on which data of the pixel appear is less.
摘要:
A print system includes a computer and a printer. Image data having pseudo gradation with a dither pattern are printed by the printer. The computer divides the image data into predetermined areas, determines whether or not a dot arrangement pattern of image data in each of the areas matches a dither pattern that was used for generating the pseudo gradation, determines a representative value concerning a density of image data within the area if they match one another, and sends data related to the determined representative value to the printer. The printer obtains a representative value of each area from compressed data received from the computer and compares the obtained representative value with the dither pattern so as to reproduce a dot pattern.
摘要:
Methods, devices and systems for compressing images are provided. One method includes creating halftone mask structures and applying compression coding techniques to arrayed pixels sorted using the halftone mask structures in order to convert an image to a compressed multi-level, halftoned image.
摘要:
Forced compression halftone processes and forced compression techniques may be used to forcibly compress page raster images passed between a Digital Front End (DFE) processor and a Continuous Feed (CF) printer within a CF printing system. If a DFE processor determines that a compressed image size exceeds a static or dynamically predetermined threshold, the DFE processor may re-render the image using a “forced compression” halftone process, such as 2-to-1 forced compression, 4-to-1 forced compression, reduced resolution, etc. Once the page raster image has been re-rendered, the DFE processor may use a forced compression technique, which is complementary to the applied “forced compression” halftone process to re-compress the page raster image. The approach allows page raster images to be compressed to meet interface bandwidth constraints associated with the physical interface between the DFE processor and CF print engine, thereby allowing otherwise unprintable jobs to be printed with reasonable quality.
摘要:
An image forming apparatus, including a halftone image converter to convert input image data having a plurality of bits per pixel into halftone image data having a binary pixel value corresponding to a bright pixel or a dark pixel, and a bit encoder to divide the halftone image data into blocks with a predetermined size, and to perform a bit-encoding operation by using the number of either the bright or dark pixels in the block to output encoded image data.
摘要:
In an image processing apparatus, a data amount of printing data generated for each different size of dot is reduced. Specifically, in quantization to obtain data for each printing head, printing data for a large dot is set as data in which a bit number per pixel is two bits, and printing data for a medium or small dot is set as data in which a bit number per pixel is one bit. Thereby, a data amount per pixel can be reduced compared with data in which all bit numbers per pixel for the large, medium and small dots are equally two bits.
摘要:
An image encoding method forms units respectively made up of a plurality of pixels belonging to within one period of a digital image data having a periodic property, and carries out an encoding using the units as units of encoding, so that two units which are consecutively encoded are separated by an integer multiple of the period.
摘要:
The image output system of the invention collects a preset number of adjacent pixels to one pixel group to divide a number of pixels constituting an image into multiple pixel groups and specifies a pixel group tone value as a representative tone value of each pixel group. The image output system refers to a conversion table to generate dot number data of each pixel group. The conversion table stores dot number data, which represents number of dots to be created in one pixel group, in relation to a combination of a pixel group classification number allocated to each pixel group and the specified pixel group tone value of the pixel group. The image output system then refers to a priority order of pixels representing potentials of dot creation in respective pixels of one pixel group, determines the positions of dot-on pixels in each pixel group according to the generated dot number data of the pixel group, and actually creates dots according to the determined positions of the dot-on pixels. The dot number data does not include information on the positions of the dot-on pixels and has a small data volume, thus enabling high-speed data transfer. The dot number data is readily obtained by simply referring to the conversion table. This leads to high-speed output of high-quality image data. The technique of the invention thus enables easy and high-speed output of a high-quality image.
摘要:
Sets of multiple pixels are grouped into pixel groups, and on the basis of tone value distribution in each pixel group, it is decided whether to divide the pixel group. For pixel groups that are not divided, a representative tone value is determined for the pixel group, and for pixel groups that are divided, a representative tone value is determined for each region created by the division. Next, from multilevel halftoning result values derived by multilevel halftoning of the representative tone values, the dot on-off state is determined for each pixel in the pixel groups, and the image is output. At this time, for divided pixel groups, the dot on-off state is determined for each pixel in the regions, based on the multilevel halftoning result value for each region. With multilevel halftoning result values, data creation and transfer can be performed rapidly. Additionally, since the dot on-off state can be determined for each pixel in a pixel group even in instances where the pixel group has a tone value distribution, images of high picture quality can be output rapidly by unit of a simple process.
摘要:
An image printing process of the invention first specifies a pixel group tone value of each pixel group consisting of a preset number of multiple pixels and refers to one of correlation maps selected for the pixel group to convert the specified pixel group tone value to a multivalue code. Each of the correlation maps sets multivalue codes in correlation to pixel group tone values. The multivalue codes of all pixel groups constituting an image are output as control data to an image output device. The image output device determines the dot on-off state in respective pixels of each pixel group according to the received control data and actually creates dots on an output medium to complete an output image. Each correlation map referred to for the multivalue coding has a slightly lower tone resolution in a higher tone value area than in a lower tone value area. This arrangement desirably reduces the data volume of the control data, while preventing deterioration of the picture quality. The technique of the invention enables quick output of the control data and accordingly ensures high-speed output of a high-quality image by this simple procedure.