Abstract:
A drive architecture comprises a rotor and a gearbox for driving the rotor. A pair of input gears provides rotational drive to the gearbox. A first recuperative cycle engine drives one of the pair of gears and a second engine drives the other of the pair of gears. The first recuperative cycle engine and the second engine are both gas turbine engines. A power takeoff from a drive shaft of the second engine supplies rotational drive to drive at least one component in the first recuperative cycle drive.
Abstract:
A gas turbine engine includes a turbine section fluidly connected to a combustor by a primary flow path. The turbine section includes a first portion at a high pressure relative to a second portion. A thermally isolated cooling plenum is positioned radially inward of the primary flow path. The cooling plenum is defined by a forward wall, a shaft structure, an aft wall, and an inner diameter wall of the primary flow path. Air in the thermally isolated cooling plenum is thermally isolated from air in the primary flow path. At least one cooling air system is operable to provide cooling air to the thermally isolated cooling plenum.
Abstract:
A gas turbine engine having a compressor section using blades on a rotor to deliver a gas at supersonic conditions to a stator. The stator includes one or more of aerodynamic ducts that have converging and diverging portions for deceleration of the gas to subsonic conditions and to deliver a high pressure gas to combustors. The aerodynamic ducts include structures for changing the effective contraction ratio to enable starting even when designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of two to one (2:1) or more, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.
Abstract:
A gas turbine engine. The engine includes a first compressor coupled to a first turbine by a first shaft, the first turbine having first and second turbine stages. A first combustor is provided downstream of the first compressor and upstream of the first stage of the first turbine. A second combustor is provided downstream of the first stage of the first turbine, and upstream of the second stage of the first turbine. A further turbine is provided downstream of the first turbine, and is coupled to a further compressor by a further shaft.
Abstract:
A gas-turbine combustion chamber arrangement includes a flame tube, a diffuser element arranged upstream of the flame tube in the flow direction, the diffuser element including an annular duct, and an axial compressor arranged upstream of the diffuser element. The diffuser element features an annular guide vane area in which guide vanes are arranged, which for redirecting an incoming flow are provided at an angle (α) in a range between 28° and 32° relative to a central axis of the gas turbine. Downstream of the guide vane area, a diffuser area is arranged, the diffuser area not being provided with flow-guiding elements affecting the flow, where burners arranged in the annular combustion chamber are provided with their burner axes at an angle (β) between 40° and 50° relative to the central axis.
Abstract:
An object of the present invention is to provide a method and a system for implementing the method so as to alleviate the disadvantages of a reciprocating combustion engine and gas turbine in electric energy production. The invention is based on the idea of arranging a combustion chamber (10) outside a gas turbine (22) and providing compressed air to the combustion chamber (10) in order to carry out a combustion process in controlled and optimal conditions.
Abstract:
An industrial gas turbine engine (10), including: a can annular combustion assembly (80), having a plurality of discrete flow ducts configured to receive combustion gas from respective combustors (82) and deliver the combustion gas along a straight flow path at a speed and orientation appropriate for delivery directly onto the first row (56) of turbine blades (62); and a compressor diffuser (32) having a redirecting surface (130, 140) configured to receive an axial flow of compressed air and redirect the axial flow of compressed air radially outward.
Abstract:
A gas turbine includes one or more combustors, and each combustor may include one or more fuel nozzles for mixing fuel with a compressed working fluid prior to combustion. The gas turbine further includes various structures for reducing the modal coupling of the combustion dynamics by producing a different convective time, fuel flow, and/or compressed working fluid flow through at least one fuel nozzle.
Abstract:
A method for improving interpenetration, mixing, and combustion between a fuel and oxidizer reactant mixture and combustion product gases in engines having a combustor includes the step of providing an engine having a combustor in which the reaction mixture and product gases are subjected to acceleration directed transverse to a direction along which the reactant mixture flows through the combustor during combustion. One or more catalyst elements are positioned within the combustor to generate Rayleigh-Taylor instability and thereby enhance interpenetration of the reactant mixture and product gases within the combustor chamber during combustion.
Abstract:
An annular combustion (22) chamber and a transient plasma system (42) in communication with the annular combustion chamber (22) to sustain a spinning detonation wave. This system (42) is also called as “nanosecond pulsed plasma” system and a pulse generator (48) operates to generate by energy but intense high voltage pulses to provide tansient plasma (p); increasing the reactivity of the chemical species of the popelllants. The propulsion relies on constant pressure combustion (CDWE).