Abstract:
A method and apparatus are provided for sensing basis weight of a rod of material, such as tobacco, by two basis weight sensing operations which are then combined. A first sensing operation having high accuracy but slow response time is combined with a second sensing operation having low accuracy but fast response time to result in a high accuracy and fast response time output signal. The first sensing operation is performed using a low radiation beta gauge which does not require licensing or safety precautions required by currently used beta gauges. The second sensing operation is performed using a dielectric sensor. The output signals from the first and second sensing operations are time averaged and combined such that the fast response output signals from the second sensing operation are calibrated or biased using the output signals from the first sensing operation to result in a high accuracy and fast response time measurement of the basis weight for a rod of material, such as tobacco.
Abstract:
A detector of a measuring system sensitive to light energy receives light from a process being measured and also from a separate light source which is modulated such that it can be detected in signals generated by the detector. The separate light source is turned on and off to modulate its output such that output signals from the detector can be separated into on-times and off-times of the separate light source. The difference in on and off signal levels generated by the detector, or elements of the detector if the detector has a plurality of elements, are used to calibrate the detector. The light energy is conveyed to the detector by an energy conduit which may be a "leaky" optical fiber which receives light at one end and leaks the light out one sidewall along a portion of the fiber which is positioned adjacent to and preferably secured to the detector. The leaky optical fiber can be made by removing cladding from at least a portion of the sidewall along the portion of the fiber which is to leak light to the detector. Alternately, a bundle of fiber optics can be utilized with one end of the bundle receiving light and the other end being broken out to direct one or more of the fibers toward elements of the detector.
Abstract:
Pinch valves having a flexible, constrictable sleeve are used to control a dilution headbox for a paper making machine. A variety of pinch valves may be used in the present invention with the pinch valves being actuated by pneumatic or hydraulic pressure or by mechanically pinching the valves' sleeves by means of rams driven by stepper or linear drive motors. For pneumatic control, dynamic differential pressure drops are measured across the valves to determine flow rate through the valves. A pinch valve, referred to herein as a torsional pinch valve, is disclosed for dilution headbox control. In one form, a first end of a sleeve is fixedly mounted in a support frame and the second end of the sleeve is mounted for rotation in the frame. A driver rotates the second end of the sleeve such that a flow path through the sleeve is controlled. The flow path is a maximum when no torsion is placed on the sleeve and is reduced to substantially zero by sufficient rotation. In another form, first ends of two sleeves are secured into a support frame such that the sleeves are in axial alignment with one another. The second ends of the sleeves are secured to an annular collar or sleeve support member which is mounted for rotation between the fixedly mounted first ends. By rotating the annular collar, the cross section of the flow path is controlled.
Abstract:
The velocity or speed of ultrasonic energy in moving webs of material is measured on-line as the webs are manufactured by engaging and preferably scanning a measuring head over the web of material. Improved ultrasonic energy transducers are employed wherein a material contacting member is secured to an interface region between oppositely operated first and second regions which intensify and amplify the movement of the interface region and hence the material contacting member by operating in a push-pull mode relative to the interface region. The transducers are calibrated by means of reference paths having known ultrasonic transmission characteristics which reference paths are separate and apart from the web of material which is being measured. The transducers can be selectively contacted with the web of material or not under the influence of vacuum which is applied to a measuring head into which the transducers are installed. A large plurality of ultrasonic energy signals are received by one or more receiving transducers and digitally integrated or summed and averaged to eliminate substantial noise which is present on the received ultrasonic energy signals due to the relative motion of the transducers and the web of material being measured. The travel time between the transmitting transducer and the receiving transducer or transducers is then combined with the distance or distances therebetween to arrive at the velocity or speed of the ultrasonic energy in a web being measured.
Abstract:
On-line measurement of fiber orientation and anisotropy in a non-woven web of material is performed by directing three light sources toward a sensing region of the web. Reflectively scattered light from each light source is detected by a pair of light sensors positioned on either side of an incidence plane including the beam of incident light. Back scattered light from each light source is also detected by at least one light sensor positioned generally above the sensing region. Preferably two back scattered light sensors are provided for each light source, one common light sensor and one dedicated light sensor. The signals from the light sensors for each of the light sources are combined to generate resultant fiber orientation signals which are used to compute a fiber orientation angle relative to the machine direction and an anisotropy characteristic for the web. The three light sources are modulated and the signals from the light sensors are synchronously demodulated such that light simultaneously incident on the sensing region is electrically separated to correspond to optical paths defined by the three light sources. The resulting signals define points on a generally elliptical polar distribution function of a resultant fiber orientation curve. The curve is approximated by an equation with the measured points being substituted into the equation to form a set of three equations with three unknowns which are then solved to determine the fiber orientation and anisotropy of the web being measured.
Abstract:
Improved ultrasonic energy transducers each include a material contacting member secured to a piezoelectric element at an interface region between oppositely operated first and second regions of the piezoelectric element. The material contacting member intensifies and amplifies movement of the interface region as the first and second regions of the piezoelectric element operate in a push-pull mode relative to the interface region. The first and second regions of the piezoelectric element can be electrically driven to move the material contacting member for transmission of ultrasonic energy or mechanically driven by the material contacting member for receipt of ultrasonic energy. A variety of piezoelectric elements can be used in the improved transducers including, for example, generally rectangular bars and discs segmented into two or more portions. A variety of material contacting members can also be used including, for example, a cylindrical stud and a more narrow dowel.
Abstract:
A caliper measuring system is provided for determining the thickness of a moving sheet. The system comprises first and second caliper sensing heads having first and second sensing shoes positioned on opposite sides of the moving sheet for engaging the sheet. A gap sensor is associated with the first and second sensing shoes for generating distance signals representative of the distance between the first and second sensing shoes and for determining the thickness of the moving sheet based upon the distance signals. The gap sensor includes a processor which determines the thickness of the moving sheet from the distance signals, generates a count of lumps sensed in the moving web, and generates a baring profile representative of rapid thickness variations along the moving sheet in the direction of movement of the sheet.
Abstract:
A new two-dimensional (2D) variation modeling and control technique for a machine producing a web of material, such as paper, uses functional transformation with basis functions which are wavelets, preferably wavelets derived from and closely resembling the responses generated by actuation of cross direction (CD) actuators of the machine. By using the disclosed functional transformation together with carefully selected basis functions, memory and real-time processing requirements are substantially reduced so that practical controls can be readily implemented. In addition, the functional transformation technique of the present application expands conventional CD correction to also correct for a portion of the residual variations which, until now, have remained uncorrected. The new 2D profile is treated as the superposition of two main components: a pure machine direction (MD) variation component and a two-dimensional sheet variation component. The pure MD variation is identical to the conventional MD variation; however, the two-dimensional sheet variation represents the evolution of a sheet property being measured in both a temporal direction (TD) and a spatial direction (SD), i.e. it includes both the traditional pure CD profile and a portion of the residual variation. The TD is aligned with the MD and the SD is perpendicular to the TD or is aligned with the CD. The new 2D variation is controlled by a new 2D control arrangement which includes an optimal predictive SD controller and a model based TD controller to quickly achieve 2D web uniformity.
Abstract:
Sensors are spaced along an extended process from its beginning end to its finishing end. Each sensor is associated with a parallel inferential control loop (PICL) and generates an actual measurement signal for a portion of the process. Each PICL includes a process model emulating the sensed portion of the process with the process models being cascaded from the beginning end through and including the finishing end. Each PICL generates a loop control signal corresponding to its sensed portion of process with the loop control signals from the PICLs being summed to generate a total control signal which controls a control element at the beginning end of the process and also is received by the first or most up-stream process model. The process models produce expected measurement signals which are combined with the actual measurement signals to determine difference signals for each PICL which includes a reset model emulating the sensed portion of the process. Each reset model receives a reset input signal from a preceding PICL and generates a reset output signal to decouple control of preceding PICLs from the PICL receiving the reset input signal. One or more of the PICLs can be disabled provided its deviation signal and setpoint signal are nullified, its reset output signal is routed to be the reset input signal for the succeeding PICL and any setpoint signal for the loop is converted and transferred from the disabled loop to a preceding loop.
Abstract:
A throttle valve is provided in each actuator of a calender roll controller with the throttle valve controlling an internal air orifice within each actuator to provide a substantially uniform air mass flow of either hot or cold air. Each throttle valve is controlled in response to the temperature of the air being delivered by the actuator such that a smaller orifice is provided for hot air than for cold air to provide substantially uniform air mass flow from each of the actuators and therefore substantially uniform air velocity to better control the temperatures of the longitudinal zones of a calender roll and better maintain boundaries between the zones. In addition to throttle valve control of the actuators, an air scoop concentric with a calender roll being controlled and spaced from the calender roll is provided to channel air from the actuators over the calender roll. The scoop comprises heat insulating material to prevent heat loss out the back of the scoop. In addition, a plurality of arcuate zone strips are provided on the concave inner surface of the scoop and in substantial alignment with the plurality of actuators for channeling air from the actuators. The arcuate zone strips are spaced apart from one another for thermal separation such that thermal diffusion among longitudinal zones of a calender roll within the scoop are substantially eliminated.