Abstract:
The present invention provides improved pharmaceutical formulations for pulmonary delivery having improved chemical and physical stability of the therapeutic, prophylactic or diagnostic agent as compared to formulations known in the art. The improved pharmaceutical formulations of the invention for administration to the respiratory system of a patient for the treatment of a variety of disease conditions comprise a mass of biocompatible particles comprising an active agent, and a hydrogenated starch hydrosylate (HSH). The improvement over the prior art comprises the presence of HSH in the pharmaceutical formulation. The invention further relates to a method of treating diseases comprising administering the pharmaceutical formulations of the present invention to the respiratory system of a patient in need of treatment.
Abstract:
In one aspect, the invention is related to a method of treating a patient with Parkinson's disease, the method including administering to the respiratory tract of the patient particles that include more than about 90 weight percent (wt %) of levodopa. The particles are delivered to the patient's pulmonary system, preferably to the alveoli or the deep lung.
Abstract:
The present invention provides a capsule containing an inhalable powder composition wherein the composition comprises about 75% by weight or more levodopa, dipalmitoylphosphatidylcholine (DPPC) and a salt characterized by a working density of less than about 100 g/L. The invention further provides a capsule containing an inhalable powder composition wherein the composition comprises about 75% by weight or more levodopa, dipalmitoylphosphatidylcholine (DPPC) and a salt characterized by a working density of less than about 100 g/L wherein the capsule material comprises hydroxypropylmethylcellulose (HPMC) and titanium dioxide.
Abstract:
A device for puncturing a capsule to release a powdered medicament therefrom includes a chamber for receiving the capsule. The capsule includes opposing domes and a cylindrical wall portion defined by a capsule wall radius r. The device further includes a mechanism for puncturing at least one hole in at least one dome. A center of each hole is located within an annular puncture region situated at no less than 0.4 r, and a total surface area of all puncture holes is between about 0.5% and about 2.2% of a total surface area of the capsule. The annular puncture region may, for example, be situated between about 0.4 r and about 0.8 r, or between about 0.4 r and about 0.6 r.
Abstract:
The present invention is directed toward particles for delivery of epinephrine to the respiratory system and methods for treating a patient in need of epinephrine. The particles and respirable compositions comprising the particles of the present invention described herein comprise the bioactive agent epinephrine, or a salt thereof, as a therapeutic agent. The particles are preferably formed by spray drying. Preferably, the particles and the respirable compositions are substantially dry and are substantially free of propellents. In a preferred embodiment, the particles have aerodynamic characteristics that permit targeted delivery of epinephrine to the site(s) of action.
Abstract:
The invention relates to a method of delivering an agent to the pulmonary system of a compromised patient, in a single breath-activated step, comprising administering a particle mass comprising an agent from an inhaler containing less than 5 milligrams of the mass, wherein at least about 50% of the mass in the receptacle is delivered to the pulmonary system of a patient. The invention also relates to receptacles containing the particle mass and the inhaler for use therein.
Abstract:
A device for puncturing a capsule to release a powdered medicament therefrom includes a chamber for receiving the capsule. The capsule includes opposing domes and a cylindrical wall portion defined by a capsule wall radius r. The device further includes a mechanism for puncturing at least one hole in at least one dome. A center of each hole is located within an annular puncture region situated at no less than 0.4 r, and a total surface area of all puncture holes is between about 0.5% and about 2.2% of a total surface area of the capsule. The annular puncture region may, for example, be situated between about 0.4 r and about 0.8 r, or between about 0.4 r and about 0.6 r.
Abstract:
The present invention is directed respirable, dry powder particle formulations of lung surfactants that optionally comprise surfactant proteins and that are formulated for delivery to the pulmonary system via inhalation.
Abstract:
The present invention is related to pharmaceutical formulations and methods of treating a subject afflicted with the influenza virus, the method includes administering to the respiratory tract of the patient particles that include more than about 5% to about 50% weight percent (wt %) of a neuraminidase inhibitor. The particles are delivered to the patient's pulmonary system, including the upper airways, central airways and deep lung.