Abstract:
At least a first image, such as a motion video image, is prepared for integration with at least a second image, such as a motion video image and/or a still image. The first image may be a barker, and the second image may be a menu or programming guide. To prepare the first image for integration, a first compressed image is formed, restricted to a first region of a first image area by representing at least one segment of a first image within the first region with a reference to another segment of the first image within the first region. The second image may also be prepared for integration by forming a second compressed image. The second compressed image may be restricted to a second region of a second image area by representing at least one segment of the second image within the second region with a reference to another segment of the second image within the second region. The first and second images are combined by selecting a portion of the first compressed image, selecting a portion of the second compressed image, and combining the selected portions to form an integrated image.
Abstract:
A targeted integrated image is created for delivery to a user. Content of potential interest to the user is determined based on at least one user preference. This determination may be made prior to or during the user's request for an image, such as video content, or while the user is receiving an image, such as a menu or programming guide. An image representing the content of potential interest to the user, such as a barker is selected and combined with another image of interest to the user to form a targeted integrated image for delivery to the user. The user preference may include information representing content viewing habits or content ordering habits of the user. The user preferences may be associated with the identity of the user.
Abstract:
At least a first image, such as a motion video image, is prepared for integration with at least a second image, such as a motion video image and/or a still image. The first image may be a barker, and the second image may be a menu or programming guide. To prepare the first image for integration, a first compressed image is formed, restricted to a first region of a first image area by representing at least one segment of a first image within the first region with a reference to another segment of the first image within the first region. The second image may also be prepared for integration by forming a second compressed image. The second compressed image may be restricted to a second region of a second image area by representing at least one segment of the second image within the second region with a reference to another segment of the second image within the second region. The first and second images are combined by selecting a portion of the first compressed image, selecting a portion of the second compressed image, and combining the selected portions to form an integrated image.
Abstract:
A method (300) and system (100,200) for customizing a user interface (122) on a display or consumption device (121) is provided. In one embodiment, the method includes delivering, with a control circuit (210), an advertisement (114) to a plurality of client devices (106,107,108). A channel collector device 113 can then capture viewership activity data (116,117,118) occurring during playout of the advertisement. The method then modifies a presentation characteristic of the user interface by presenting a playback (501) comprising both the advertisement and at least some of the viewership activity data in synchrony.
Abstract:
Methods and apparatuses and systems for inserting advertisement segments into trick content. Advertisement segments present in the original video content are extracted from the video content and merged with other navigation segements to generate associated trick content. The advertisement segment may be inserted into the trick files may be displayed at their normal playback speed, a different apparent playback speed, or displayed in a different direction. Additionally, alternative content of the advertisement segment may be inserted into the advertisement segment to provide specialized versions of the advertisement content to be displayed in trick content mode, or the content may be completely different fro the original advertisement content, such as session specific advertisement content or even user specific advertisement content based on user preferences.
Abstract:
Scheduled data is received and distributed in a system, such as a DSDD system. A schedule director receives a schedule representing inventory of data available from a data source and desired times for distributing the data. The schedule director coordinates with one or more resource managers that maintain information regarding resource utilization in the system. The schedule director negotiates with the resource managers to reserve resources in the system for receiving the scheduled data from the data source, storing the received data, and/or preparing the received data for delivery to a user. Resources are reserved based on the schedule and the resources determined to be available. The resources are reserved to perform at least one task, independent of other resources in the system.
Abstract:
A video on demand (VOD) asset management system (100). Content is moved within the VOD system in accordance with predetermined variables such that certain content, such as that which is in high demand, is located on a server (120, 125) which is nearer to a subscriber (130), and content which is in lesser demand is located on a server (110, 115) which is more remote from the subscriber. Content may also be duplicated or moved within the system based upon other variables such as demographics of the subscriber, whether there is an advertising campaign for the content, and the age of the content.
Abstract:
The present invention is directed to a diagnostic system which utilizes a microprocessor within the power module to control the diagnostic function of all field replaceable modules powered thereby; additional diagnostic hardware being located on each replaceable module which may be utilized in normal operation for functions of the module and, on an interrupt basis, it is utilized in diagnostic functions; the diagnostic hardware in the power module serving to collect the diagnostic test data from all the functional modules powered thereby, the data being transmitted thereto over a diagnostic data bus. If a plurality of power supplies are present in the system, each power supply has a microprocessor for control, each such microprocessor being coupled to the replaceable modules and the diagnostic circuitry therein; a bus being provided between the processors in the power supplies so that one such microprocessor can become a master diagnostic to process all the diagnostic messages from the system.
Abstract:
A multi-level priority micro-interrupt controller for a micro-program controlled computer handles a plurality of interrupt signals at a plurality of levels of priority, wherein only one interrupt signal for each level of priority may be active at any moment. When an interrupt occurs which has a higher priority than that of the interrupt currently being handled, the control store address of the next instruction to be executed is stacked and the interrupt handler subroutine for the higher priority interrupt is initiated. When an interrupt occurs which has a lower priority than that of the interrupt currently being handled, it is queued. After an interrupt has been handled, the stack is popped and execution is resumed at the control store address at the top of the stack. The control store address of the interrupt handler subroutine for a particular interrupt is decoded from the interrupt signals in two parts, the second part also being used to control the branching to the interrupt handler subroutine.
Abstract:
An intermediate server (104) is operable in a distributed key management system (300). The intermediate server comprises one or more processors (205) and an intermediate key material repository (302) to store digital rights management key material. The intermediate server can be operable in the system between a master server (101) and a local server (106), with the local server to deliver content (108) to one or more subscriber devices (109,110). The intermediate server, or optionally a management system (117) can pre-populate the intermediate key material repository with one or key material (1005) corresponding to fragments (1001) of the content prior to the fragments of content being requested by the one or more subscriber devices.