摘要:
Systems and methods which provide accurate formation information regardless of formation and borehole geometry, including those associated with high angle and horizontal wells, are shown. In providing processing of logging or image data, such as may be provided by a density tool or other tool, according to embodiments, formation attributes or features (e.g., density and dip angle) are estimated using raw data provided by a the tool. The foregoing estimations may thereafter be iteratively refined using effective volume of interest (EVOI) information. According to embodiments, depth boundaries of formation information provided by the tool are shifted as a function of azimuth for correct spatial positioning of formation features using EVOI information. Processing of formation attribute or feature data provided by embodiments may be used with respect to various tool configurations, including configurations with and without borehole standoff.
摘要:
A system for wirelessly monitoring a property in a process, comprising a sensor data device for providing sensor data relating to the process a memory device comprising information, wherein the information comprises transmission information, a transportable wireless transmission device configured to receive the sensor data and the information, interpret the transmission information, and transmit the sensor data, the information, or both to a receiving station using the transmission information, and a temporary mounting position in proximity to the memory device for temporarily positioning the transportable wireless transmission device.
摘要:
Integrated systems and methods for low emission power generation in a hydrocarbon recovery processes are provided. One system includes a control fuel stream, an oxygen stream, a combustion unit, a first power generate on system and a second power generation system. The combustion unit is configured to receive and combust the control fuel stream and the oxygen stream to produce a gaseous combustion stream having carbon dioxide and water. The first power generation system is configured to generate at least one unit of power and a carbon dioxide stream. The second power generation system is configured to receive thermal energy from the gaseous combustion stream and convert the thermal energy into at least one unit of power.
摘要:
Method for updating a velocity model (926) for migrating seismic data using migration velocity scans with the objective of building a model that reproduces the same travel times that produced selected optimal images from a scan. For each optimal pick location (914) in the corresponding test velocity model (916), a corresponding location is determined (922) in the velocity model to be updated, using a criterion that the travel time to the surface for a zero offset ray (918) should be the same. Imaging travel times are then computed from the determined location to various surface locations in the update model (924), and those times are compared to travel times in the test velocity model from the optimal pick location to the same array of surface locations. The updating process consists of adjusting the model to minimize the travel time differences (934).
摘要:
A method of enhancing a geologic model of a subsurface region is provided. A bed topography of the subsurface region is obtained. The bed topography is defined by a plurality of cells with an elevation associated with each cell center. The bed topography is represented as a cell-centered piecewise constant representation based on the elevations associated with the cells. The bed topography is reconstructed to produce a spatially continuous surface. Flux and gravitation al force-related source terms are calculated based on the reconstructed bed topography. Fluxes are calculated between at least two of the cells. Fluid flow, deposition of sediments onto the bed, and/or erosion of sediments from the bed are predicted using the fluxes and gravitational force-related source terms. The predictions are inputted into the geologic model to predict characteristics of the subsurface region, and the predicted characteristics are outputted.
摘要:
The invention discloses methods of, as well as apparatus and systems for, perforating and treating multiple intervals of one or more subterranean formations intersected by a wellbore by deploying within said wellbore a bottom-hole assembly (“BHA”) having a perforating device and a sealing mechanisms, wherein pressure communication is established between the portions of the wellbore above and below the sealing mechanism. The BHA is positioned within the wellbore such that the sealing mechanism, when actuated, establishes a hydraulic seal in the wellbore to positively force fluid to enter the perforations corresponding to the interval to be treated. A treating fluid is pumped down the wellbore and into the perforations created in the perforated interval. The sealing mechanism is released, and the steps are repeated for as many intervals as desired, without having to remove the BHA from said wellbore.
摘要:
There is provided a method for modeling a hydrocarbon reservoir that includes generating a reservoir model that has a plurality of sub regions. A solution surrogate is obtained for a sub region by searching a database of existing solution surrogates to obtain an approximate solution surrogate based on a comparison of physical, geometrical, or numerical parameters of the sub region with physical, geometrical, or numerical parameters associated with the existing surrogate solutions in the database. If an approximate solution surrogate does not exist in the database, the sub region is simulated using a training simulation to obtain a set of training parameters comprising state variables and boundary conditions of the sub region. A machine learning algorithm is used to obtain a new solution surrogate based on the set of training parameters. The hydrocarbon reservoir can be simulated using the solution surrogate obtained for the at least one sub region.
摘要:
The present techniques disclose methods and systems for rapidly evaluating multiple models using multilevel surrogates (for example, in two or more levels). These surrogates form a hierarchy in which surrogate accuracy increases with its level. At the highest level, the surrogate becomes an accurate model, which may be referred to as a full-physics model (FPM). The higher level surrogates may be used to efficiently train the low level surrogates (more specifically, the lowest level surrogate in most applications), reducing the amount of computing resources used. The low level surrogates are then used to evaluate the entire parameter space for various purposes, such as history matching, evaluating the performance of a hydrocarbon reservoir, and the like.
摘要:
A system for removing acid gases from a raw gas stream is provided. The system includes a cryogenic distillation tower. The cryogenic distillation tower has a controlled freezing zone that receives a cold liquid spray comprised primarily of methane. The tower receives and then separates the raw gas stream into an overhead methane gas stream and a substantially solid material comprised of carbon dioxide. The system includes a collector tray below the controlled freezing zone. The collector tray receives the substantially solid material as it is precipitated in the controlled freezing zone. The system also has a filter. The filter receives the substantially solid material and then separates it into a solid material comprised primarily of carbon dioxide, and a liquid material comprising methane. The solid material may be warmed as a liquid and sold, while the liquid material is returned to the cryogenic distillation tower.
摘要:
An automated method for texture segmentation (11) of geophysical data volumes, where texture is defined by double-window statistics of data values, the statistics being generated by a smaller pattern window moving around within a larger sampling window (12). A measure of “distance” between two locations is selected based on similarity between the double-window statistics from sampling windows centered at the two locations (13). Clustering of locations is then based on distance proximity (14).